Weak-quasi-Stone algebras
- Autores
- Celani, Sergio Arturo; Cabrer, Leonardo Manuel
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we shall introduce the varietyWQS of weak-quasi-Stone algebras as a generalization of the variety QS of quasi-Stone algebras introduced in [9]. We shall apply the Priestley duality developed in [4] for the variety N of ¬-lattices to give a duality for WQS. We prove that a weak-quasi-Stone algebra is characterized by a property of the set of its regular elements, as well by mean of some principal lattice congruences. We will also determine the simple and subdirectly irreducible algebras.
Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina
Fil: Cabrer, Leonardo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina - Materia
-
LATTICES WITH NEGATION
QUASI-STONE ALGEBRAS
SIMPLE AND SUBDIRECTLY IRREDUCIBLE ALGEBRAS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/114867
Ver los metadatos del registro completo
id |
CONICETDig_edb4b3595382be4848f769e791744872 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/114867 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Weak-quasi-Stone algebrasCelani, Sergio ArturoCabrer, Leonardo ManuelLATTICES WITH NEGATIONQUASI-STONE ALGEBRASSIMPLE AND SUBDIRECTLY IRREDUCIBLE ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we shall introduce the varietyWQS of weak-quasi-Stone algebras as a generalization of the variety QS of quasi-Stone algebras introduced in [9]. We shall apply the Priestley duality developed in [4] for the variety N of ¬-lattices to give a duality for WQS. We prove that a weak-quasi-Stone algebra is characterized by a property of the set of its regular elements, as well by mean of some principal lattice congruences. We will also determine the simple and subdirectly irreducible algebras.Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; ArgentinaFil: Cabrer, Leonardo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; ArgentinaWiley VCH Verlag2009-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/114867Celani, Sergio Arturo; Cabrer, Leonardo Manuel; Weak-quasi-Stone algebras; Wiley VCH Verlag; Mathematical Logic Quarterly; 55; 3; 6-2009; 288-2980942-5616CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.200710092info:eu-repo/semantics/altIdentifier/doi/10.1002/malq.200710092info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:51:28Zoai:ri.conicet.gov.ar:11336/114867instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:51:28.369CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Weak-quasi-Stone algebras |
title |
Weak-quasi-Stone algebras |
spellingShingle |
Weak-quasi-Stone algebras Celani, Sergio Arturo LATTICES WITH NEGATION QUASI-STONE ALGEBRAS SIMPLE AND SUBDIRECTLY IRREDUCIBLE ALGEBRAS |
title_short |
Weak-quasi-Stone algebras |
title_full |
Weak-quasi-Stone algebras |
title_fullStr |
Weak-quasi-Stone algebras |
title_full_unstemmed |
Weak-quasi-Stone algebras |
title_sort |
Weak-quasi-Stone algebras |
dc.creator.none.fl_str_mv |
Celani, Sergio Arturo Cabrer, Leonardo Manuel |
author |
Celani, Sergio Arturo |
author_facet |
Celani, Sergio Arturo Cabrer, Leonardo Manuel |
author_role |
author |
author2 |
Cabrer, Leonardo Manuel |
author2_role |
author |
dc.subject.none.fl_str_mv |
LATTICES WITH NEGATION QUASI-STONE ALGEBRAS SIMPLE AND SUBDIRECTLY IRREDUCIBLE ALGEBRAS |
topic |
LATTICES WITH NEGATION QUASI-STONE ALGEBRAS SIMPLE AND SUBDIRECTLY IRREDUCIBLE ALGEBRAS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we shall introduce the varietyWQS of weak-quasi-Stone algebras as a generalization of the variety QS of quasi-Stone algebras introduced in [9]. We shall apply the Priestley duality developed in [4] for the variety N of ¬-lattices to give a duality for WQS. We prove that a weak-quasi-Stone algebra is characterized by a property of the set of its regular elements, as well by mean of some principal lattice congruences. We will also determine the simple and subdirectly irreducible algebras. Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina Fil: Cabrer, Leonardo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina |
description |
In this paper we shall introduce the varietyWQS of weak-quasi-Stone algebras as a generalization of the variety QS of quasi-Stone algebras introduced in [9]. We shall apply the Priestley duality developed in [4] for the variety N of ¬-lattices to give a duality for WQS. We prove that a weak-quasi-Stone algebra is characterized by a property of the set of its regular elements, as well by mean of some principal lattice congruences. We will also determine the simple and subdirectly irreducible algebras. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/114867 Celani, Sergio Arturo; Cabrer, Leonardo Manuel; Weak-quasi-Stone algebras; Wiley VCH Verlag; Mathematical Logic Quarterly; 55; 3; 6-2009; 288-298 0942-5616 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/114867 |
identifier_str_mv |
Celani, Sergio Arturo; Cabrer, Leonardo Manuel; Weak-quasi-Stone algebras; Wiley VCH Verlag; Mathematical Logic Quarterly; 55; 3; 6-2009; 288-298 0942-5616 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.200710092 info:eu-repo/semantics/altIdentifier/doi/10.1002/malq.200710092 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley VCH Verlag |
publisher.none.fl_str_mv |
Wiley VCH Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782201190940672 |
score |
12.982451 |