Weak-quasi-Stone algebras

Autores
Celani, Sergio Arturo; Cabrer, Leonardo Manuel
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we shall introduce the varietyWQS of weak-quasi-Stone algebras as a generalization of the variety QS of quasi-Stone algebras introduced in [9]. We shall apply the Priestley duality developed in [4] for the variety N of ¬-lattices to give a duality for WQS. We prove that a weak-quasi-Stone algebra is characterized by a property of the set of its regular elements, as well by mean of some principal lattice congruences. We will also determine the simple and subdirectly irreducible algebras.
Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina
Fil: Cabrer, Leonardo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina
Materia
LATTICES WITH NEGATION
QUASI-STONE ALGEBRAS
SIMPLE AND SUBDIRECTLY IRREDUCIBLE ALGEBRAS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/114867

id CONICETDig_edb4b3595382be4848f769e791744872
oai_identifier_str oai:ri.conicet.gov.ar:11336/114867
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Weak-quasi-Stone algebrasCelani, Sergio ArturoCabrer, Leonardo ManuelLATTICES WITH NEGATIONQUASI-STONE ALGEBRASSIMPLE AND SUBDIRECTLY IRREDUCIBLE ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we shall introduce the varietyWQS of weak-quasi-Stone algebras as a generalization of the variety QS of quasi-Stone algebras introduced in [9]. We shall apply the Priestley duality developed in [4] for the variety N of ¬-lattices to give a duality for WQS. We prove that a weak-quasi-Stone algebra is characterized by a property of the set of its regular elements, as well by mean of some principal lattice congruences. We will also determine the simple and subdirectly irreducible algebras.Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; ArgentinaFil: Cabrer, Leonardo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; ArgentinaWiley VCH Verlag2009-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/114867Celani, Sergio Arturo; Cabrer, Leonardo Manuel; Weak-quasi-Stone algebras; Wiley VCH Verlag; Mathematical Logic Quarterly; 55; 3; 6-2009; 288-2980942-5616CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.200710092info:eu-repo/semantics/altIdentifier/doi/10.1002/malq.200710092info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:51:28Zoai:ri.conicet.gov.ar:11336/114867instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:51:28.369CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Weak-quasi-Stone algebras
title Weak-quasi-Stone algebras
spellingShingle Weak-quasi-Stone algebras
Celani, Sergio Arturo
LATTICES WITH NEGATION
QUASI-STONE ALGEBRAS
SIMPLE AND SUBDIRECTLY IRREDUCIBLE ALGEBRAS
title_short Weak-quasi-Stone algebras
title_full Weak-quasi-Stone algebras
title_fullStr Weak-quasi-Stone algebras
title_full_unstemmed Weak-quasi-Stone algebras
title_sort Weak-quasi-Stone algebras
dc.creator.none.fl_str_mv Celani, Sergio Arturo
Cabrer, Leonardo Manuel
author Celani, Sergio Arturo
author_facet Celani, Sergio Arturo
Cabrer, Leonardo Manuel
author_role author
author2 Cabrer, Leonardo Manuel
author2_role author
dc.subject.none.fl_str_mv LATTICES WITH NEGATION
QUASI-STONE ALGEBRAS
SIMPLE AND SUBDIRECTLY IRREDUCIBLE ALGEBRAS
topic LATTICES WITH NEGATION
QUASI-STONE ALGEBRAS
SIMPLE AND SUBDIRECTLY IRREDUCIBLE ALGEBRAS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we shall introduce the varietyWQS of weak-quasi-Stone algebras as a generalization of the variety QS of quasi-Stone algebras introduced in [9]. We shall apply the Priestley duality developed in [4] for the variety N of ¬-lattices to give a duality for WQS. We prove that a weak-quasi-Stone algebra is characterized by a property of the set of its regular elements, as well by mean of some principal lattice congruences. We will also determine the simple and subdirectly irreducible algebras.
Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina
Fil: Cabrer, Leonardo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina
description In this paper we shall introduce the varietyWQS of weak-quasi-Stone algebras as a generalization of the variety QS of quasi-Stone algebras introduced in [9]. We shall apply the Priestley duality developed in [4] for the variety N of ¬-lattices to give a duality for WQS. We prove that a weak-quasi-Stone algebra is characterized by a property of the set of its regular elements, as well by mean of some principal lattice congruences. We will also determine the simple and subdirectly irreducible algebras.
publishDate 2009
dc.date.none.fl_str_mv 2009-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/114867
Celani, Sergio Arturo; Cabrer, Leonardo Manuel; Weak-quasi-Stone algebras; Wiley VCH Verlag; Mathematical Logic Quarterly; 55; 3; 6-2009; 288-298
0942-5616
CONICET Digital
CONICET
url http://hdl.handle.net/11336/114867
identifier_str_mv Celani, Sergio Arturo; Cabrer, Leonardo Manuel; Weak-quasi-Stone algebras; Wiley VCH Verlag; Mathematical Logic Quarterly; 55; 3; 6-2009; 288-298
0942-5616
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.200710092
info:eu-repo/semantics/altIdentifier/doi/10.1002/malq.200710092
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley VCH Verlag
publisher.none.fl_str_mv Wiley VCH Verlag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782201190940672
score 12.982451