Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part I: MINLP and MILP models
- Autores
- Rodriguez, Maria Analia; Vecchietti, Aldo; Harjunkoski, Iiro; Grossmann, Ignacio E.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- An optimization model is proposed to redesign the supply chain of spare part delivery under demand uncertainty from strategic and tactical perspectives in a planning horizon consisting of multiple periods.Long term decisions involve new installations, expansions and elimination of warehouses and factories handling multiple products. It is also considered which warehouses should be used as repair work-shops in order to store, repair and deliver used units to customers. Tactical planning includes deciding inventory levels (safety stock and expected inventory) for each type of spare part in distribution centers and customer plants, as well as the connection links between the supply chain nodes. Capacity constraints are also taken into account when planning inventory levels. At the tactical level it is determined how demand of failing units is satisfied, and whether to use new or used parts. The uncertain demand is addressed by defining the optimal amount of safety stock that guarantees certain service level at a customer plant.In addition, the risk pooling effect is taken into account when defining inventory levels in distribution centers and customer zones. Due to the nonlinear nature of the original formulation, a piece-wise linearization approach is applied to obtain a tight lower bound of the optimal solution. The formulation can be adapted to several industry-critical units and the supply chain of electric motors is provided here as anexample.
Fil: Rodriguez, Maria Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Vecchietti, Aldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Harjunkoski, Iiro. ABB Corporate Research; Alemania
Fil: Grossmann, Ignacio E.. University of Carnegie Mellon. Department of Chemical Engineering; Estados Unidos - Materia
-
Supply Chain
Demand Uncertainty
Inventory Management
Mixed Integer Nonlinear Programming - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/21764
Ver los metadatos del registro completo
id |
CONICETDig_593bf1bd06ecbb1b77d9d26339a44fa0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/21764 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part I: MINLP and MILP modelsRodriguez, Maria AnaliaVecchietti, AldoHarjunkoski, IiroGrossmann, Ignacio E.Supply ChainDemand UncertaintyInventory ManagementMixed Integer Nonlinear Programminghttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2An optimization model is proposed to redesign the supply chain of spare part delivery under demand uncertainty from strategic and tactical perspectives in a planning horizon consisting of multiple periods.Long term decisions involve new installations, expansions and elimination of warehouses and factories handling multiple products. It is also considered which warehouses should be used as repair work-shops in order to store, repair and deliver used units to customers. Tactical planning includes deciding inventory levels (safety stock and expected inventory) for each type of spare part in distribution centers and customer plants, as well as the connection links between the supply chain nodes. Capacity constraints are also taken into account when planning inventory levels. At the tactical level it is determined how demand of failing units is satisfied, and whether to use new or used parts. The uncertain demand is addressed by defining the optimal amount of safety stock that guarantees certain service level at a customer plant.In addition, the risk pooling effect is taken into account when defining inventory levels in distribution centers and customer zones. Due to the nonlinear nature of the original formulation, a piece-wise linearization approach is applied to obtain a tight lower bound of the optimal solution. The formulation can be adapted to several industry-critical units and the supply chain of electric motors is provided here as anexample.Fil: Rodriguez, Maria Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Vecchietti, Aldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Harjunkoski, Iiro. ABB Corporate Research; AlemaniaFil: Grossmann, Ignacio E.. University of Carnegie Mellon. Department of Chemical Engineering; Estados UnidosElsevier2014-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21764Rodriguez, Maria Analia; Vecchietti, Aldo; Harjunkoski, Iiro; Grossmann, Ignacio E.; Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part I: MINLP and MILP models; Elsevier; Computers and Chemical Engineering; 62; 2-2014; 194-2100098-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135413003293info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2013.10.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:41Zoai:ri.conicet.gov.ar:11336/21764instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:42.185CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part I: MINLP and MILP models |
title |
Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part I: MINLP and MILP models |
spellingShingle |
Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part I: MINLP and MILP models Rodriguez, Maria Analia Supply Chain Demand Uncertainty Inventory Management Mixed Integer Nonlinear Programming |
title_short |
Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part I: MINLP and MILP models |
title_full |
Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part I: MINLP and MILP models |
title_fullStr |
Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part I: MINLP and MILP models |
title_full_unstemmed |
Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part I: MINLP and MILP models |
title_sort |
Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part I: MINLP and MILP models |
dc.creator.none.fl_str_mv |
Rodriguez, Maria Analia Vecchietti, Aldo Harjunkoski, Iiro Grossmann, Ignacio E. |
author |
Rodriguez, Maria Analia |
author_facet |
Rodriguez, Maria Analia Vecchietti, Aldo Harjunkoski, Iiro Grossmann, Ignacio E. |
author_role |
author |
author2 |
Vecchietti, Aldo Harjunkoski, Iiro Grossmann, Ignacio E. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Supply Chain Demand Uncertainty Inventory Management Mixed Integer Nonlinear Programming |
topic |
Supply Chain Demand Uncertainty Inventory Management Mixed Integer Nonlinear Programming |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
An optimization model is proposed to redesign the supply chain of spare part delivery under demand uncertainty from strategic and tactical perspectives in a planning horizon consisting of multiple periods.Long term decisions involve new installations, expansions and elimination of warehouses and factories handling multiple products. It is also considered which warehouses should be used as repair work-shops in order to store, repair and deliver used units to customers. Tactical planning includes deciding inventory levels (safety stock and expected inventory) for each type of spare part in distribution centers and customer plants, as well as the connection links between the supply chain nodes. Capacity constraints are also taken into account when planning inventory levels. At the tactical level it is determined how demand of failing units is satisfied, and whether to use new or used parts. The uncertain demand is addressed by defining the optimal amount of safety stock that guarantees certain service level at a customer plant.In addition, the risk pooling effect is taken into account when defining inventory levels in distribution centers and customer zones. Due to the nonlinear nature of the original formulation, a piece-wise linearization approach is applied to obtain a tight lower bound of the optimal solution. The formulation can be adapted to several industry-critical units and the supply chain of electric motors is provided here as anexample. Fil: Rodriguez, Maria Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Vecchietti, Aldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Harjunkoski, Iiro. ABB Corporate Research; Alemania Fil: Grossmann, Ignacio E.. University of Carnegie Mellon. Department of Chemical Engineering; Estados Unidos |
description |
An optimization model is proposed to redesign the supply chain of spare part delivery under demand uncertainty from strategic and tactical perspectives in a planning horizon consisting of multiple periods.Long term decisions involve new installations, expansions and elimination of warehouses and factories handling multiple products. It is also considered which warehouses should be used as repair work-shops in order to store, repair and deliver used units to customers. Tactical planning includes deciding inventory levels (safety stock and expected inventory) for each type of spare part in distribution centers and customer plants, as well as the connection links between the supply chain nodes. Capacity constraints are also taken into account when planning inventory levels. At the tactical level it is determined how demand of failing units is satisfied, and whether to use new or used parts. The uncertain demand is addressed by defining the optimal amount of safety stock that guarantees certain service level at a customer plant.In addition, the risk pooling effect is taken into account when defining inventory levels in distribution centers and customer zones. Due to the nonlinear nature of the original formulation, a piece-wise linearization approach is applied to obtain a tight lower bound of the optimal solution. The formulation can be adapted to several industry-critical units and the supply chain of electric motors is provided here as anexample. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/21764 Rodriguez, Maria Analia; Vecchietti, Aldo; Harjunkoski, Iiro; Grossmann, Ignacio E.; Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part I: MINLP and MILP models; Elsevier; Computers and Chemical Engineering; 62; 2-2014; 194-210 0098-1354 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/21764 |
identifier_str_mv |
Rodriguez, Maria Analia; Vecchietti, Aldo; Harjunkoski, Iiro; Grossmann, Ignacio E.; Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part I: MINLP and MILP models; Elsevier; Computers and Chemical Engineering; 62; 2-2014; 194-210 0098-1354 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135413003293 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2013.10.007 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269970244829184 |
score |
13.13397 |