A Conceptual Framework for Crop-Based Agri-food Supply Chain Characterization Under Uncertainty
- Autores
- Alemany, M. M. E.; Esteso, Ana; Ortiz, A.; Hernández, J. E.; Fernández, Alejandro; Garrido, Alejandra; Martin, Jonathan; Liu, S.; Zhao, G.; Guyon, C.; Iannacone, R.
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- parte de libro
- Estado
- versión publicada
- Descripción
- Crop-based Agri-food Supply Chains (AFSCs) are complex systems that face multiple sources of uncertainty that can cause a significant imbalance between supply and demand in terms of product varieties, quantities, qualities, customer requirements, times and prices, all of which greatly complicate their management. Poor management of these sources of uncertainty in these AFSCs can have negative impact on quality, safety, and sustainability by reducing the logistic efficiency and increasing the waste. Therefore, it becomes crucial to develop models in order to deal with the key sources of uncertainty. For this purpose, it is necessary to precisely understand and define the problem under study. Even, the characterisation process of this domains is also a difficult and time-consuming task, especially when the right directions and standards are not in place. In this chapter, a Conceptual Framework is proposed that systematically collects those aspects that are relevant for an adequate crop-based AFSC management under uncertainty.
- Materia
-
Ciencias de la Computación e Información
Crop-based agri-food supply chain
Conceptual framework
Uncertainty
Management - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/11426
Ver los metadatos del registro completo
id |
CICBA_df6b906e6fd9a7266f4fde1c145be29f |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/11426 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
A Conceptual Framework for Crop-Based Agri-food Supply Chain Characterization Under UncertaintyAlemany, M. M. E.Esteso, AnaOrtiz, A.Hernández, J. E.Fernández, AlejandroGarrido, AlejandraMartin, JonathanLiu, S.Zhao, G.Guyon, C.Iannacone, R.Ciencias de la Computación e InformaciónCrop-based agri-food supply chainConceptual frameworkUncertaintyManagementCrop-based Agri-food Supply Chains (AFSCs) are complex systems that face multiple sources of uncertainty that can cause a significant imbalance between supply and demand in terms of product varieties, quantities, qualities, customer requirements, times and prices, all of which greatly complicate their management. Poor management of these sources of uncertainty in these AFSCs can have negative impact on quality, safety, and sustainability by reducing the logistic efficiency and increasing the waste. Therefore, it becomes crucial to develop models in order to deal with the key sources of uncertainty. For this purpose, it is necessary to precisely understand and define the problem under study. Even, the characterisation process of this domains is also a difficult and time-consuming task, especially when the right directions and standards are not in place. In this chapter, a Conceptual Framework is proposed that systematically collects those aspects that are relevant for an adequate crop-based AFSC management under uncertainty.Springer, Cham2020-07info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/11426isbn:978-3-030-51046-6enginfo:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-030-51047-3_2info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-04T09:43:29Zoai:digital.cic.gba.gob.ar:11746/11426Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-04 09:43:29.808CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
A Conceptual Framework for Crop-Based Agri-food Supply Chain Characterization Under Uncertainty |
title |
A Conceptual Framework for Crop-Based Agri-food Supply Chain Characterization Under Uncertainty |
spellingShingle |
A Conceptual Framework for Crop-Based Agri-food Supply Chain Characterization Under Uncertainty Alemany, M. M. E. Ciencias de la Computación e Información Crop-based agri-food supply chain Conceptual framework Uncertainty Management |
title_short |
A Conceptual Framework for Crop-Based Agri-food Supply Chain Characterization Under Uncertainty |
title_full |
A Conceptual Framework for Crop-Based Agri-food Supply Chain Characterization Under Uncertainty |
title_fullStr |
A Conceptual Framework for Crop-Based Agri-food Supply Chain Characterization Under Uncertainty |
title_full_unstemmed |
A Conceptual Framework for Crop-Based Agri-food Supply Chain Characterization Under Uncertainty |
title_sort |
A Conceptual Framework for Crop-Based Agri-food Supply Chain Characterization Under Uncertainty |
dc.creator.none.fl_str_mv |
Alemany, M. M. E. Esteso, Ana Ortiz, A. Hernández, J. E. Fernández, Alejandro Garrido, Alejandra Martin, Jonathan Liu, S. Zhao, G. Guyon, C. Iannacone, R. |
author |
Alemany, M. M. E. |
author_facet |
Alemany, M. M. E. Esteso, Ana Ortiz, A. Hernández, J. E. Fernández, Alejandro Garrido, Alejandra Martin, Jonathan Liu, S. Zhao, G. Guyon, C. Iannacone, R. |
author_role |
author |
author2 |
Esteso, Ana Ortiz, A. Hernández, J. E. Fernández, Alejandro Garrido, Alejandra Martin, Jonathan Liu, S. Zhao, G. Guyon, C. Iannacone, R. |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Ciencias de la Computación e Información Crop-based agri-food supply chain Conceptual framework Uncertainty Management |
topic |
Ciencias de la Computación e Información Crop-based agri-food supply chain Conceptual framework Uncertainty Management |
dc.description.none.fl_txt_mv |
Crop-based Agri-food Supply Chains (AFSCs) are complex systems that face multiple sources of uncertainty that can cause a significant imbalance between supply and demand in terms of product varieties, quantities, qualities, customer requirements, times and prices, all of which greatly complicate their management. Poor management of these sources of uncertainty in these AFSCs can have negative impact on quality, safety, and sustainability by reducing the logistic efficiency and increasing the waste. Therefore, it becomes crucial to develop models in order to deal with the key sources of uncertainty. For this purpose, it is necessary to precisely understand and define the problem under study. Even, the characterisation process of this domains is also a difficult and time-consuming task, especially when the right directions and standards are not in place. In this chapter, a Conceptual Framework is proposed that systematically collects those aspects that are relevant for an adequate crop-based AFSC management under uncertainty. |
description |
Crop-based Agri-food Supply Chains (AFSCs) are complex systems that face multiple sources of uncertainty that can cause a significant imbalance between supply and demand in terms of product varieties, quantities, qualities, customer requirements, times and prices, all of which greatly complicate their management. Poor management of these sources of uncertainty in these AFSCs can have negative impact on quality, safety, and sustainability by reducing the logistic efficiency and increasing the waste. Therefore, it becomes crucial to develop models in order to deal with the key sources of uncertainty. For this purpose, it is necessary to precisely understand and define the problem under study. Even, the characterisation process of this domains is also a difficult and time-consuming task, especially when the right directions and standards are not in place. In this chapter, a Conceptual Framework is proposed that systematically collects those aspects that are relevant for an adequate crop-based AFSC management under uncertainty. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bookPart info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_3248 info:ar-repo/semantics/parteDeLibro |
format |
bookPart |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/11426 isbn:978-3-030-51046-6 |
url |
https://digital.cic.gba.gob.ar/handle/11746/11426 |
identifier_str_mv |
isbn:978-3-030-51046-6 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-030-51047-3_2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer, Cham |
publisher.none.fl_str_mv |
Springer, Cham |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1842340424065220608 |
score |
12.623145 |