A Conceptual Framework for Crop-Based Agri-food Supply Chain Characterization Under Uncertainty

Autores
Alemany, M. M. E.; Esteso, Ana; Ortiz, A.; Hernández, J. E.; Fernández, Alejandro; Garrido, Alejandra; Martin, Jonathan; Liu, S.; Zhao, G.; Guyon, C.; Iannacone, R.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
Crop-based Agri-food Supply Chains (AFSCs) are complex systems that face multiple sources of uncertainty that can cause a significant imbalance between supply and demand in terms of product varieties, quantities, qualities, customer requirements, times and prices, all of which greatly complicate their management. Poor management of these sources of uncertainty in these AFSCs can have negative impact on quality, safety, and sustainability by reducing the logistic efficiency and increasing the waste. Therefore, it becomes crucial to develop models in order to deal with the key sources of uncertainty. For this purpose, it is necessary to precisely understand and define the problem under study. Even, the characterisation process of this domains is also a difficult and time-consuming task, especially when the right directions and standards are not in place. In this chapter, a Conceptual Framework is proposed that systematically collects those aspects that are relevant for an adequate crop-based AFSC management under uncertainty.
Materia
Ciencias de la Computación e Información
Crop-based agri-food supply chain
Conceptual framework
Uncertainty
Management
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/11426

id CICBA_df6b906e6fd9a7266f4fde1c145be29f
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/11426
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling A Conceptual Framework for Crop-Based Agri-food Supply Chain Characterization Under UncertaintyAlemany, M. M. E.Esteso, AnaOrtiz, A.Hernández, J. E.Fernández, AlejandroGarrido, AlejandraMartin, JonathanLiu, S.Zhao, G.Guyon, C.Iannacone, R.Ciencias de la Computación e InformaciónCrop-based agri-food supply chainConceptual frameworkUncertaintyManagementCrop-based Agri-food Supply Chains (AFSCs) are complex systems that face multiple sources of uncertainty that can cause a significant imbalance between supply and demand in terms of product varieties, quantities, qualities, customer requirements, times and prices, all of which greatly complicate their management. Poor management of these sources of uncertainty in these AFSCs can have negative impact on quality, safety, and sustainability by reducing the logistic efficiency and increasing the waste. Therefore, it becomes crucial to develop models in order to deal with the key sources of uncertainty. For this purpose, it is necessary to precisely understand and define the problem under study. Even, the characterisation process of this domains is also a difficult and time-consuming task, especially when the right directions and standards are not in place. In this chapter, a Conceptual Framework is proposed that systematically collects those aspects that are relevant for an adequate crop-based AFSC management under uncertainty.Springer, Cham2020-07info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/11426isbn:978-3-030-51046-6enginfo:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-030-51047-3_2info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-04T09:43:29Zoai:digital.cic.gba.gob.ar:11746/11426Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-04 09:43:29.808CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv A Conceptual Framework for Crop-Based Agri-food Supply Chain Characterization Under Uncertainty
title A Conceptual Framework for Crop-Based Agri-food Supply Chain Characterization Under Uncertainty
spellingShingle A Conceptual Framework for Crop-Based Agri-food Supply Chain Characterization Under Uncertainty
Alemany, M. M. E.
Ciencias de la Computación e Información
Crop-based agri-food supply chain
Conceptual framework
Uncertainty
Management
title_short A Conceptual Framework for Crop-Based Agri-food Supply Chain Characterization Under Uncertainty
title_full A Conceptual Framework for Crop-Based Agri-food Supply Chain Characterization Under Uncertainty
title_fullStr A Conceptual Framework for Crop-Based Agri-food Supply Chain Characterization Under Uncertainty
title_full_unstemmed A Conceptual Framework for Crop-Based Agri-food Supply Chain Characterization Under Uncertainty
title_sort A Conceptual Framework for Crop-Based Agri-food Supply Chain Characterization Under Uncertainty
dc.creator.none.fl_str_mv Alemany, M. M. E.
Esteso, Ana
Ortiz, A.
Hernández, J. E.
Fernández, Alejandro
Garrido, Alejandra
Martin, Jonathan
Liu, S.
Zhao, G.
Guyon, C.
Iannacone, R.
author Alemany, M. M. E.
author_facet Alemany, M. M. E.
Esteso, Ana
Ortiz, A.
Hernández, J. E.
Fernández, Alejandro
Garrido, Alejandra
Martin, Jonathan
Liu, S.
Zhao, G.
Guyon, C.
Iannacone, R.
author_role author
author2 Esteso, Ana
Ortiz, A.
Hernández, J. E.
Fernández, Alejandro
Garrido, Alejandra
Martin, Jonathan
Liu, S.
Zhao, G.
Guyon, C.
Iannacone, R.
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Ciencias de la Computación e Información
Crop-based agri-food supply chain
Conceptual framework
Uncertainty
Management
topic Ciencias de la Computación e Información
Crop-based agri-food supply chain
Conceptual framework
Uncertainty
Management
dc.description.none.fl_txt_mv Crop-based Agri-food Supply Chains (AFSCs) are complex systems that face multiple sources of uncertainty that can cause a significant imbalance between supply and demand in terms of product varieties, quantities, qualities, customer requirements, times and prices, all of which greatly complicate their management. Poor management of these sources of uncertainty in these AFSCs can have negative impact on quality, safety, and sustainability by reducing the logistic efficiency and increasing the waste. Therefore, it becomes crucial to develop models in order to deal with the key sources of uncertainty. For this purpose, it is necessary to precisely understand and define the problem under study. Even, the characterisation process of this domains is also a difficult and time-consuming task, especially when the right directions and standards are not in place. In this chapter, a Conceptual Framework is proposed that systematically collects those aspects that are relevant for an adequate crop-based AFSC management under uncertainty.
description Crop-based Agri-food Supply Chains (AFSCs) are complex systems that face multiple sources of uncertainty that can cause a significant imbalance between supply and demand in terms of product varieties, quantities, qualities, customer requirements, times and prices, all of which greatly complicate their management. Poor management of these sources of uncertainty in these AFSCs can have negative impact on quality, safety, and sustainability by reducing the logistic efficiency and increasing the waste. Therefore, it becomes crucial to develop models in order to deal with the key sources of uncertainty. For this purpose, it is necessary to precisely understand and define the problem under study. Even, the characterisation process of this domains is also a difficult and time-consuming task, especially when the right directions and standards are not in place. In this chapter, a Conceptual Framework is proposed that systematically collects those aspects that are relevant for an adequate crop-based AFSC management under uncertainty.
publishDate 2020
dc.date.none.fl_str_mv 2020-07
dc.type.none.fl_str_mv info:eu-repo/semantics/bookPart
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
format bookPart
status_str publishedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/11426
isbn:978-3-030-51046-6
url https://digital.cic.gba.gob.ar/handle/11746/11426
identifier_str_mv isbn:978-3-030-51046-6
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-030-51047-3_2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer, Cham
publisher.none.fl_str_mv Springer, Cham
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1842340424065220608
score 12.623145