Simultaneous Production and Distribution of Industrial Gas Supply-Chains
- Autores
- Marchetti, Pablo Andres; Gupta, Vijay; Grossmann, Ignacio E.; Cook, Lauren; Valton , Pierre Marie; Singh, Tejinder; Li, Tong; André, Jean
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we propose a multi-period mixed-integer linear programming model for optimal enterprise-level planning of industrial gas operations. The objective is to minimize the total cost of production and distribution of liquid products by coordinating production decisions at multiple plants and distribution decisions at multiple depots. Production decisions include production modes and rates that determine power consumption. Distribution decisions involve source, destination, quantity, route, and time of each truck delivery. The selection of routes is a critical factor of the distribution cost. The main goal of this contribution is to assess the benefits of optimal coordination of production and distribution. The proposed methodology has been tested on small, medium, and large size examples. The results show that significant benefits can be obtained with higher coordination among plants/depots in order to fulfill a common set of shared customer demands. The application to real industrial size test cases is also discussed.
Fil: Marchetti, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina. University Of Carnegie Mellon; Estados Unidos
Fil: Gupta, Vijay. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados Unidos
Fil: Grossmann, Ignacio E.. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados Unidos
Fil: Cook, Lauren. Delaware Research and Technology Center; Estados Unidos
Fil: Valton , Pierre Marie. Air Liquide - Paris Saclay R&d Center; Francia
Fil: Singh, Tejinder. Delaware Research and Technology Center; Estados Unidos
Fil: Li, Tong. Delaware Research and Technology Center; Estados Unidos
Fil: André, Jean. Air Liquide - Paris Saclay R&d Center; Francia - Materia
-
Supply-Chain Optimization
Industrial Gases
Production Planning
Inventory Routing Problem
Multi-Period Model
Mixed-Integer Linear Programming - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/9328
Ver los metadatos del registro completo
id |
CONICETDig_1012a19b540035cf2d2bb2cebf5dc4ed |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/9328 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Simultaneous Production and Distribution of Industrial Gas Supply-ChainsMarchetti, Pablo AndresGupta, VijayGrossmann, Ignacio E.Cook, LaurenValton , Pierre MarieSingh, TejinderLi, TongAndré, JeanSupply-Chain OptimizationIndustrial GasesProduction PlanningInventory Routing ProblemMulti-Period ModelMixed-Integer Linear Programminghttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2In this paper, we propose a multi-period mixed-integer linear programming model for optimal enterprise-level planning of industrial gas operations. The objective is to minimize the total cost of production and distribution of liquid products by coordinating production decisions at multiple plants and distribution decisions at multiple depots. Production decisions include production modes and rates that determine power consumption. Distribution decisions involve source, destination, quantity, route, and time of each truck delivery. The selection of routes is a critical factor of the distribution cost. The main goal of this contribution is to assess the benefits of optimal coordination of production and distribution. The proposed methodology has been tested on small, medium, and large size examples. The results show that significant benefits can be obtained with higher coordination among plants/depots in order to fulfill a common set of shared customer demands. The application to real industrial size test cases is also discussed.Fil: Marchetti, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina. University Of Carnegie Mellon; Estados UnidosFil: Gupta, Vijay. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados UnidosFil: Grossmann, Ignacio E.. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados UnidosFil: Cook, Lauren. Delaware Research and Technology Center; Estados UnidosFil: Valton , Pierre Marie. Air Liquide - Paris Saclay R&d Center; FranciaFil: Singh, Tejinder. Delaware Research and Technology Center; Estados UnidosFil: Li, Tong. Delaware Research and Technology Center; Estados UnidosFil: André, Jean. Air Liquide - Paris Saclay R&d Center; FranciaElsevier2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9328Marchetti, Pablo Andres; Gupta, Vijay; Grossmann, Ignacio E.; Cook, Lauren; Valton , Pierre Marie; et al.; Simultaneous Production and Distribution of Industrial Gas Supply-Chains; Elsevier; Computers And Chemical Engineering; 69; 10-2014; 39-580098-1354enginfo:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1016/j.compchemeng.2014.06.010info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135414001896info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:40Zoai:ri.conicet.gov.ar:11336/9328instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:40.788CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Simultaneous Production and Distribution of Industrial Gas Supply-Chains |
title |
Simultaneous Production and Distribution of Industrial Gas Supply-Chains |
spellingShingle |
Simultaneous Production and Distribution of Industrial Gas Supply-Chains Marchetti, Pablo Andres Supply-Chain Optimization Industrial Gases Production Planning Inventory Routing Problem Multi-Period Model Mixed-Integer Linear Programming |
title_short |
Simultaneous Production and Distribution of Industrial Gas Supply-Chains |
title_full |
Simultaneous Production and Distribution of Industrial Gas Supply-Chains |
title_fullStr |
Simultaneous Production and Distribution of Industrial Gas Supply-Chains |
title_full_unstemmed |
Simultaneous Production and Distribution of Industrial Gas Supply-Chains |
title_sort |
Simultaneous Production and Distribution of Industrial Gas Supply-Chains |
dc.creator.none.fl_str_mv |
Marchetti, Pablo Andres Gupta, Vijay Grossmann, Ignacio E. Cook, Lauren Valton , Pierre Marie Singh, Tejinder Li, Tong André, Jean |
author |
Marchetti, Pablo Andres |
author_facet |
Marchetti, Pablo Andres Gupta, Vijay Grossmann, Ignacio E. Cook, Lauren Valton , Pierre Marie Singh, Tejinder Li, Tong André, Jean |
author_role |
author |
author2 |
Gupta, Vijay Grossmann, Ignacio E. Cook, Lauren Valton , Pierre Marie Singh, Tejinder Li, Tong André, Jean |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Supply-Chain Optimization Industrial Gases Production Planning Inventory Routing Problem Multi-Period Model Mixed-Integer Linear Programming |
topic |
Supply-Chain Optimization Industrial Gases Production Planning Inventory Routing Problem Multi-Period Model Mixed-Integer Linear Programming |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this paper, we propose a multi-period mixed-integer linear programming model for optimal enterprise-level planning of industrial gas operations. The objective is to minimize the total cost of production and distribution of liquid products by coordinating production decisions at multiple plants and distribution decisions at multiple depots. Production decisions include production modes and rates that determine power consumption. Distribution decisions involve source, destination, quantity, route, and time of each truck delivery. The selection of routes is a critical factor of the distribution cost. The main goal of this contribution is to assess the benefits of optimal coordination of production and distribution. The proposed methodology has been tested on small, medium, and large size examples. The results show that significant benefits can be obtained with higher coordination among plants/depots in order to fulfill a common set of shared customer demands. The application to real industrial size test cases is also discussed. Fil: Marchetti, Pablo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina. University Of Carnegie Mellon; Estados Unidos Fil: Gupta, Vijay. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados Unidos Fil: Grossmann, Ignacio E.. University Of Carnegie Mellon. Department Of Chemical Engineering; Estados Unidos Fil: Cook, Lauren. Delaware Research and Technology Center; Estados Unidos Fil: Valton , Pierre Marie. Air Liquide - Paris Saclay R&d Center; Francia Fil: Singh, Tejinder. Delaware Research and Technology Center; Estados Unidos Fil: Li, Tong. Delaware Research and Technology Center; Estados Unidos Fil: André, Jean. Air Liquide - Paris Saclay R&d Center; Francia |
description |
In this paper, we propose a multi-period mixed-integer linear programming model for optimal enterprise-level planning of industrial gas operations. The objective is to minimize the total cost of production and distribution of liquid products by coordinating production decisions at multiple plants and distribution decisions at multiple depots. Production decisions include production modes and rates that determine power consumption. Distribution decisions involve source, destination, quantity, route, and time of each truck delivery. The selection of routes is a critical factor of the distribution cost. The main goal of this contribution is to assess the benefits of optimal coordination of production and distribution. The proposed methodology has been tested on small, medium, and large size examples. The results show that significant benefits can be obtained with higher coordination among plants/depots in order to fulfill a common set of shared customer demands. The application to real industrial size test cases is also discussed. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/9328 Marchetti, Pablo Andres; Gupta, Vijay; Grossmann, Ignacio E.; Cook, Lauren; Valton , Pierre Marie; et al.; Simultaneous Production and Distribution of Industrial Gas Supply-Chains; Elsevier; Computers And Chemical Engineering; 69; 10-2014; 39-58 0098-1354 |
url |
http://hdl.handle.net/11336/9328 |
identifier_str_mv |
Marchetti, Pablo Andres; Gupta, Vijay; Grossmann, Ignacio E.; Cook, Lauren; Valton , Pierre Marie; et al.; Simultaneous Production and Distribution of Industrial Gas Supply-Chains; Elsevier; Computers And Chemical Engineering; 69; 10-2014; 39-58 0098-1354 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1016/j.compchemeng.2014.06.010 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135414001896 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269768451620864 |
score |
13.13397 |