Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part II: A Lagrangean decomposition algorithm
- Autores
- Yongheng, Jiang; Rodriguez, Maria Analia; Harjunkoski, Iiro; Grossmann, Ignacio E.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In Part I (Rodriguez, Vecchietti, Harjunkoski, & Grossmann, 2014), we proposed an optimization model to redesign the supply chain of spare parts industry under demand uncertainty from strategic and tactical perspectives in a planning horizon consisting of multiple time periods. To address large scale industrial problems, a Lagrangean scheme is proposed to decompose the MINLP of Part I according to the warehouses. The subproblems are first approximated by an adaptive piece-wise linearization scheme that provides lower bounds, and the MILP is further relaxed to an LP to improve solution efficiency while providing a valid lower bound. An initialization scheme is designed to obtain good initial Lagrange multipliers, which are scaled to accelerate the convergence. To obtain feasible solutions, an adaptive linearization scheme is also introduced. The results from an illustrative problem and two real world industrial problems show that the method can obtain optimal or near optimal solutions in modest computational times.
Fil: Yongheng, Jiang. Tsinghua University, Institute of Process Control Engineering; China
Fil: Rodriguez, Maria Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Harjunkoski, Iiro. ABB Corporate Research; Alemania
Fil: Grossmann, Ignacio E.. University of Carnegie Mellon. Department of Chemical Engineering; Estados Unidos - Materia
-
Supply Chain
Lagrangean Decomposition
Adaptive Piecewise Linearization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/21765
Ver los metadatos del registro completo
id |
CONICETDig_ad07caca3db41c82d4548b19a48ce439 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/21765 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part II: A Lagrangean decomposition algorithmYongheng, JiangRodriguez, Maria AnaliaHarjunkoski, IiroGrossmann, Ignacio E.Supply ChainLagrangean DecompositionAdaptive Piecewise LinearizationIn Part I (Rodriguez, Vecchietti, Harjunkoski, & Grossmann, 2014), we proposed an optimization model to redesign the supply chain of spare parts industry under demand uncertainty from strategic and tactical perspectives in a planning horizon consisting of multiple time periods. To address large scale industrial problems, a Lagrangean scheme is proposed to decompose the MINLP of Part I according to the warehouses. The subproblems are first approximated by an adaptive piece-wise linearization scheme that provides lower bounds, and the MILP is further relaxed to an LP to improve solution efficiency while providing a valid lower bound. An initialization scheme is designed to obtain good initial Lagrange multipliers, which are scaled to accelerate the convergence. To obtain feasible solutions, an adaptive linearization scheme is also introduced. The results from an illustrative problem and two real world industrial problems show that the method can obtain optimal or near optimal solutions in modest computational times.Fil: Yongheng, Jiang. Tsinghua University, Institute of Process Control Engineering; ChinaFil: Rodriguez, Maria Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Harjunkoski, Iiro. ABB Corporate Research; AlemaniaFil: Grossmann, Ignacio E.. University of Carnegie Mellon. Department of Chemical Engineering; Estados UnidosElsevier2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21765Yongheng, Jiang; Rodriguez, Maria Analia; Harjunkoski, Iiro; Grossmann, Ignacio E.; Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part II: A Lagrangean decomposition algorithm; Elsevier; Computers and Chemical Engineering; 62; 3-2014; 211-2240098-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2013.11.014info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135413003657info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:03Zoai:ri.conicet.gov.ar:11336/21765instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:04.185CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part II: A Lagrangean decomposition algorithm |
title |
Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part II: A Lagrangean decomposition algorithm |
spellingShingle |
Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part II: A Lagrangean decomposition algorithm Yongheng, Jiang Supply Chain Lagrangean Decomposition Adaptive Piecewise Linearization |
title_short |
Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part II: A Lagrangean decomposition algorithm |
title_full |
Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part II: A Lagrangean decomposition algorithm |
title_fullStr |
Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part II: A Lagrangean decomposition algorithm |
title_full_unstemmed |
Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part II: A Lagrangean decomposition algorithm |
title_sort |
Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part II: A Lagrangean decomposition algorithm |
dc.creator.none.fl_str_mv |
Yongheng, Jiang Rodriguez, Maria Analia Harjunkoski, Iiro Grossmann, Ignacio E. |
author |
Yongheng, Jiang |
author_facet |
Yongheng, Jiang Rodriguez, Maria Analia Harjunkoski, Iiro Grossmann, Ignacio E. |
author_role |
author |
author2 |
Rodriguez, Maria Analia Harjunkoski, Iiro Grossmann, Ignacio E. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Supply Chain Lagrangean Decomposition Adaptive Piecewise Linearization |
topic |
Supply Chain Lagrangean Decomposition Adaptive Piecewise Linearization |
dc.description.none.fl_txt_mv |
In Part I (Rodriguez, Vecchietti, Harjunkoski, & Grossmann, 2014), we proposed an optimization model to redesign the supply chain of spare parts industry under demand uncertainty from strategic and tactical perspectives in a planning horizon consisting of multiple time periods. To address large scale industrial problems, a Lagrangean scheme is proposed to decompose the MINLP of Part I according to the warehouses. The subproblems are first approximated by an adaptive piece-wise linearization scheme that provides lower bounds, and the MILP is further relaxed to an LP to improve solution efficiency while providing a valid lower bound. An initialization scheme is designed to obtain good initial Lagrange multipliers, which are scaled to accelerate the convergence. To obtain feasible solutions, an adaptive linearization scheme is also introduced. The results from an illustrative problem and two real world industrial problems show that the method can obtain optimal or near optimal solutions in modest computational times. Fil: Yongheng, Jiang. Tsinghua University, Institute of Process Control Engineering; China Fil: Rodriguez, Maria Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Harjunkoski, Iiro. ABB Corporate Research; Alemania Fil: Grossmann, Ignacio E.. University of Carnegie Mellon. Department of Chemical Engineering; Estados Unidos |
description |
In Part I (Rodriguez, Vecchietti, Harjunkoski, & Grossmann, 2014), we proposed an optimization model to redesign the supply chain of spare parts industry under demand uncertainty from strategic and tactical perspectives in a planning horizon consisting of multiple time periods. To address large scale industrial problems, a Lagrangean scheme is proposed to decompose the MINLP of Part I according to the warehouses. The subproblems are first approximated by an adaptive piece-wise linearization scheme that provides lower bounds, and the MILP is further relaxed to an LP to improve solution efficiency while providing a valid lower bound. An initialization scheme is designed to obtain good initial Lagrange multipliers, which are scaled to accelerate the convergence. To obtain feasible solutions, an adaptive linearization scheme is also introduced. The results from an illustrative problem and two real world industrial problems show that the method can obtain optimal or near optimal solutions in modest computational times. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/21765 Yongheng, Jiang; Rodriguez, Maria Analia; Harjunkoski, Iiro; Grossmann, Ignacio E.; Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part II: A Lagrangean decomposition algorithm; Elsevier; Computers and Chemical Engineering; 62; 3-2014; 211-224 0098-1354 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/21765 |
identifier_str_mv |
Yongheng, Jiang; Rodriguez, Maria Analia; Harjunkoski, Iiro; Grossmann, Ignacio E.; Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part II: A Lagrangean decomposition algorithm; Elsevier; Computers and Chemical Engineering; 62; 3-2014; 211-224 0098-1354 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2013.11.014 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0098135413003657 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270029763051520 |
score |
13.13397 |