Computational methods for the simultaneous strategic planning of supply chains and batch chemical manufacturing sites
- Autores
- Corsano, Gabriela; Guillen Gozalbez, Gonzalo; Montagna, Jorge Marcelo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we present efficient solution strategies for the task of designing supply chains with the explicit consideration of the detailed plant performance of the embedded facilities. Taking as a basis a mixed-integer linear programming (MILP) model introduced in a previous work, we propose three solution strategies that exploit the underlying mathematical structure: A bi-level algorithm, a Lagrangean decomposition method, and a hybrid approach that combines features from both of these two methods. Numerical results show that the bi-level method outperforms the others, leading to significant CPU savings when compared to the full space MILP.
Fil: Corsano, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina
Fil: Guillen Gozalbez, Gonzalo. Universitat Rovira I Virgili; España
Fil: Montagna, Jorge Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina - Materia
-
Supply Chain
Design And Planning
Mixed-Integer Linear Programming
Large-Scale Optimization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6907
Ver los metadatos del registro completo
id |
CONICETDig_f4d7afddbd2f376bc297ae5ff9f054f6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6907 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Computational methods for the simultaneous strategic planning of supply chains and batch chemical manufacturing sitesCorsano, GabrielaGuillen Gozalbez, GonzaloMontagna, Jorge MarceloSupply ChainDesign And PlanningMixed-Integer Linear ProgrammingLarge-Scale Optimizationhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2In this work we present efficient solution strategies for the task of designing supply chains with the explicit consideration of the detailed plant performance of the embedded facilities. Taking as a basis a mixed-integer linear programming (MILP) model introduced in a previous work, we propose three solution strategies that exploit the underlying mathematical structure: A bi-level algorithm, a Lagrangean decomposition method, and a hybrid approach that combines features from both of these two methods. Numerical results show that the bi-level method outperforms the others, leading to significant CPU savings when compared to the full space MILP.Fil: Corsano, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); ArgentinaFil: Guillen Gozalbez, Gonzalo. Universitat Rovira I Virgili; EspañaFil: Montagna, Jorge Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); ArgentinaElsevier2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6907Corsano, Gabriela; Guillen Gozalbez, Gonzalo; Montagna, Jorge Marcelo; Computational methods for the simultaneous strategic planning of supply chains and batch chemical manufacturing sites; Elsevier; Computers and Chemical Engineering; 60; 1-2014; 154-1710098-1354enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S009813541300269Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2013.09.001info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:12:08Zoai:ri.conicet.gov.ar:11336/6907instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:12:08.448CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Computational methods for the simultaneous strategic planning of supply chains and batch chemical manufacturing sites |
title |
Computational methods for the simultaneous strategic planning of supply chains and batch chemical manufacturing sites |
spellingShingle |
Computational methods for the simultaneous strategic planning of supply chains and batch chemical manufacturing sites Corsano, Gabriela Supply Chain Design And Planning Mixed-Integer Linear Programming Large-Scale Optimization |
title_short |
Computational methods for the simultaneous strategic planning of supply chains and batch chemical manufacturing sites |
title_full |
Computational methods for the simultaneous strategic planning of supply chains and batch chemical manufacturing sites |
title_fullStr |
Computational methods for the simultaneous strategic planning of supply chains and batch chemical manufacturing sites |
title_full_unstemmed |
Computational methods for the simultaneous strategic planning of supply chains and batch chemical manufacturing sites |
title_sort |
Computational methods for the simultaneous strategic planning of supply chains and batch chemical manufacturing sites |
dc.creator.none.fl_str_mv |
Corsano, Gabriela Guillen Gozalbez, Gonzalo Montagna, Jorge Marcelo |
author |
Corsano, Gabriela |
author_facet |
Corsano, Gabriela Guillen Gozalbez, Gonzalo Montagna, Jorge Marcelo |
author_role |
author |
author2 |
Guillen Gozalbez, Gonzalo Montagna, Jorge Marcelo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Supply Chain Design And Planning Mixed-Integer Linear Programming Large-Scale Optimization |
topic |
Supply Chain Design And Planning Mixed-Integer Linear Programming Large-Scale Optimization |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work we present efficient solution strategies for the task of designing supply chains with the explicit consideration of the detailed plant performance of the embedded facilities. Taking as a basis a mixed-integer linear programming (MILP) model introduced in a previous work, we propose three solution strategies that exploit the underlying mathematical structure: A bi-level algorithm, a Lagrangean decomposition method, and a hybrid approach that combines features from both of these two methods. Numerical results show that the bi-level method outperforms the others, leading to significant CPU savings when compared to the full space MILP. Fil: Corsano, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina Fil: Guillen Gozalbez, Gonzalo. Universitat Rovira I Virgili; España Fil: Montagna, Jorge Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo y Diseño (i); Argentina |
description |
In this work we present efficient solution strategies for the task of designing supply chains with the explicit consideration of the detailed plant performance of the embedded facilities. Taking as a basis a mixed-integer linear programming (MILP) model introduced in a previous work, we propose three solution strategies that exploit the underlying mathematical structure: A bi-level algorithm, a Lagrangean decomposition method, and a hybrid approach that combines features from both of these two methods. Numerical results show that the bi-level method outperforms the others, leading to significant CPU savings when compared to the full space MILP. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6907 Corsano, Gabriela; Guillen Gozalbez, Gonzalo; Montagna, Jorge Marcelo; Computational methods for the simultaneous strategic planning of supply chains and batch chemical manufacturing sites; Elsevier; Computers and Chemical Engineering; 60; 1-2014; 154-171 0098-1354 |
url |
http://hdl.handle.net/11336/6907 |
identifier_str_mv |
Corsano, Gabriela; Guillen Gozalbez, Gonzalo; Montagna, Jorge Marcelo; Computational methods for the simultaneous strategic planning of supply chains and batch chemical manufacturing sites; Elsevier; Computers and Chemical Engineering; 60; 1-2014; 154-171 0098-1354 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S009813541300269X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2013.09.001 info:eu-repo/semantics/altIdentifier/doi/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270186767384576 |
score |
13.13397 |