Comparison of neural networks. An estimation model in yield of monoglycerides from biodiesel by-product
- Autores
- Alvarez, Dolores María Eugenia; Balsamo, Nancy Florentina; Modesti, Mario Roberto; Crivello, Mónica Elsie
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Biodiesel is generally manufactured by transesterification, obtaining glycerol as a by-product. The transesterification of methyl stearate selectively produced monoglycerides, for glycerol valuation. Mixed oxides containing lithium catalysed the reaction. The purpose of this work was to develop and compare mathematical models obtained through artificial neural networks (ANN), capable for characterising the relationship between the mole percent conversion of methyl stearate and the yield of the products mono-, di- and triglycerides. The lowest mean squared error (MSE), the highest correlation coefficient (R), similarity in the evolution of validation and simulation errors and absence of data overlearning were considered to select the best model. Three ANNs with backpropagation structures were compared. They evidenced high correspondence between the estimated product yield values and the interpolated experimental ones. The ANN containing 35 neurons with sigmoid transfer function in the hidden layer and a linear neuron in the output one was the simplest.Consequently, the 5, 15 and 60 neurons were also explored in the hidden layer. The ANN structured with an intermediate number of neurons (35) achieved the most adequate MSE, considering mono- and diglyceride products (0.011193, 0.000489). The development of these models contributes to the dynamic estimation of the process.
Fil: Alvarez, Dolores María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Tecnología Química. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación y Tecnología Química; Argentina
Fil: Balsamo, Nancy Florentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Tecnología Química. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación y Tecnología Química; Argentina
Fil: Modesti, Mario Roberto. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina
Fil: Crivello, Mónica Elsie. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Tecnología Química. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación y Tecnología Química; Argentina - Materia
-
ARTIFICIAL NEURAL NETWORK
MONOGLYCERIDES
YIELD - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/105883
Ver los metadatos del registro completo
id |
CONICETDig_583fb2ecdf2485b9e390b5509fdfb053 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/105883 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Comparison of neural networks. An estimation model in yield of monoglycerides from biodiesel by-productAlvarez, Dolores María EugeniaBalsamo, Nancy FlorentinaModesti, Mario RobertoCrivello, Mónica ElsieARTIFICIAL NEURAL NETWORKMONOGLYCERIDESYIELDhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Biodiesel is generally manufactured by transesterification, obtaining glycerol as a by-product. The transesterification of methyl stearate selectively produced monoglycerides, for glycerol valuation. Mixed oxides containing lithium catalysed the reaction. The purpose of this work was to develop and compare mathematical models obtained through artificial neural networks (ANN), capable for characterising the relationship between the mole percent conversion of methyl stearate and the yield of the products mono-, di- and triglycerides. The lowest mean squared error (MSE), the highest correlation coefficient (R), similarity in the evolution of validation and simulation errors and absence of data overlearning were considered to select the best model. Three ANNs with backpropagation structures were compared. They evidenced high correspondence between the estimated product yield values and the interpolated experimental ones. The ANN containing 35 neurons with sigmoid transfer function in the hidden layer and a linear neuron in the output one was the simplest.Consequently, the 5, 15 and 60 neurons were also explored in the hidden layer. The ANN structured with an intermediate number of neurons (35) achieved the most adequate MSE, considering mono- and diglyceride products (0.011193, 0.000489). The development of these models contributes to the dynamic estimation of the process.Fil: Alvarez, Dolores María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Tecnología Química. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación y Tecnología Química; ArgentinaFil: Balsamo, Nancy Florentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Tecnología Química. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación y Tecnología Química; ArgentinaFil: Modesti, Mario Roberto. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; ArgentinaFil: Crivello, Mónica Elsie. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Tecnología Química. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación y Tecnología Química; ArgentinaEMaTTech Journals2019-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/105883Alvarez, Dolores María Eugenia; Balsamo, Nancy Florentina; Modesti, Mario Roberto; Crivello, Mónica Elsie; Comparison of neural networks. An estimation model in yield of monoglycerides from biodiesel by-product; EMaTTech Journals; Journal of Engineering Science and Technology Review; 12; 4; 7-2019; 103-1071791-2377CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.25103/jestr.124.12info:eu-repo/semantics/altIdentifier/url/http://www.jestr.org/downloads/Volume12Issue4/fulltext121242019.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:27:10Zoai:ri.conicet.gov.ar:11336/105883instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:27:10.48CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Comparison of neural networks. An estimation model in yield of monoglycerides from biodiesel by-product |
title |
Comparison of neural networks. An estimation model in yield of monoglycerides from biodiesel by-product |
spellingShingle |
Comparison of neural networks. An estimation model in yield of monoglycerides from biodiesel by-product Alvarez, Dolores María Eugenia ARTIFICIAL NEURAL NETWORK MONOGLYCERIDES YIELD |
title_short |
Comparison of neural networks. An estimation model in yield of monoglycerides from biodiesel by-product |
title_full |
Comparison of neural networks. An estimation model in yield of monoglycerides from biodiesel by-product |
title_fullStr |
Comparison of neural networks. An estimation model in yield of monoglycerides from biodiesel by-product |
title_full_unstemmed |
Comparison of neural networks. An estimation model in yield of monoglycerides from biodiesel by-product |
title_sort |
Comparison of neural networks. An estimation model in yield of monoglycerides from biodiesel by-product |
dc.creator.none.fl_str_mv |
Alvarez, Dolores María Eugenia Balsamo, Nancy Florentina Modesti, Mario Roberto Crivello, Mónica Elsie |
author |
Alvarez, Dolores María Eugenia |
author_facet |
Alvarez, Dolores María Eugenia Balsamo, Nancy Florentina Modesti, Mario Roberto Crivello, Mónica Elsie |
author_role |
author |
author2 |
Balsamo, Nancy Florentina Modesti, Mario Roberto Crivello, Mónica Elsie |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
ARTIFICIAL NEURAL NETWORK MONOGLYCERIDES YIELD |
topic |
ARTIFICIAL NEURAL NETWORK MONOGLYCERIDES YIELD |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Biodiesel is generally manufactured by transesterification, obtaining glycerol as a by-product. The transesterification of methyl stearate selectively produced monoglycerides, for glycerol valuation. Mixed oxides containing lithium catalysed the reaction. The purpose of this work was to develop and compare mathematical models obtained through artificial neural networks (ANN), capable for characterising the relationship between the mole percent conversion of methyl stearate and the yield of the products mono-, di- and triglycerides. The lowest mean squared error (MSE), the highest correlation coefficient (R), similarity in the evolution of validation and simulation errors and absence of data overlearning were considered to select the best model. Three ANNs with backpropagation structures were compared. They evidenced high correspondence between the estimated product yield values and the interpolated experimental ones. The ANN containing 35 neurons with sigmoid transfer function in the hidden layer and a linear neuron in the output one was the simplest.Consequently, the 5, 15 and 60 neurons were also explored in the hidden layer. The ANN structured with an intermediate number of neurons (35) achieved the most adequate MSE, considering mono- and diglyceride products (0.011193, 0.000489). The development of these models contributes to the dynamic estimation of the process. Fil: Alvarez, Dolores María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Tecnología Química. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación y Tecnología Química; Argentina Fil: Balsamo, Nancy Florentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Tecnología Química. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación y Tecnología Química; Argentina Fil: Modesti, Mario Roberto. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación en Informática para la Ingeniería; Argentina Fil: Crivello, Mónica Elsie. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Tecnología Química. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Centro de Investigación y Tecnología Química; Argentina |
description |
Biodiesel is generally manufactured by transesterification, obtaining glycerol as a by-product. The transesterification of methyl stearate selectively produced monoglycerides, for glycerol valuation. Mixed oxides containing lithium catalysed the reaction. The purpose of this work was to develop and compare mathematical models obtained through artificial neural networks (ANN), capable for characterising the relationship between the mole percent conversion of methyl stearate and the yield of the products mono-, di- and triglycerides. The lowest mean squared error (MSE), the highest correlation coefficient (R), similarity in the evolution of validation and simulation errors and absence of data overlearning were considered to select the best model. Three ANNs with backpropagation structures were compared. They evidenced high correspondence between the estimated product yield values and the interpolated experimental ones. The ANN containing 35 neurons with sigmoid transfer function in the hidden layer and a linear neuron in the output one was the simplest.Consequently, the 5, 15 and 60 neurons were also explored in the hidden layer. The ANN structured with an intermediate number of neurons (35) achieved the most adequate MSE, considering mono- and diglyceride products (0.011193, 0.000489). The development of these models contributes to the dynamic estimation of the process. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/105883 Alvarez, Dolores María Eugenia; Balsamo, Nancy Florentina; Modesti, Mario Roberto; Crivello, Mónica Elsie; Comparison of neural networks. An estimation model in yield of monoglycerides from biodiesel by-product; EMaTTech Journals; Journal of Engineering Science and Technology Review; 12; 4; 7-2019; 103-107 1791-2377 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/105883 |
identifier_str_mv |
Alvarez, Dolores María Eugenia; Balsamo, Nancy Florentina; Modesti, Mario Roberto; Crivello, Mónica Elsie; Comparison of neural networks. An estimation model in yield of monoglycerides from biodiesel by-product; EMaTTech Journals; Journal of Engineering Science and Technology Review; 12; 4; 7-2019; 103-107 1791-2377 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.25103/jestr.124.12 info:eu-repo/semantics/altIdentifier/url/http://www.jestr.org/downloads/Volume12Issue4/fulltext121242019.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EMaTTech Journals |
publisher.none.fl_str_mv |
EMaTTech Journals |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614273833107456 |
score |
13.070432 |