Simultaneous electroanalytical determination of luteolin and rutin using artificial neural networks
- Autores
- Tesio, Alvaro Yamil; Robledo, Sebastian Noel; Granero, Adrian Marcelo; Fernandez, Hector; Zon, María Alicia
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this study, we propose an electroanalytical method to quantify simultaneously luteolin and rutin, two flavonoids which are present in a pharmaceutical formulation. The methodology is based on square wave voltammetry at glassy carbon electrodes modified with multiwalled carbon nanotubes dispersed in polyethylenimine. Both flavonoids show quasi-reversible surface redox couples in 10% ethanol + 1 mol L−1 HClO4 aqueous solutions, which are defined in potential regions very close to each other. The adsorption process of flavonoids on the modified electrode surface was carried out using an accumulation potential of 0.55 V (vs. Ag/AgCl, 3 mol L−1 KCl), and an accumulation time of 20 min. Considering that luteolin and rutin electrochemical responses show a high degree of overlapping, we processed the electrochemical signals using artificial neural networks. We used a supervised network, feed-forward network with Levenberg-Marquardt back propagation training. Values of 92.6 ± 0.4 and 92 ± 1 mg per tablet were determined by the artificial neural networks methodology for luteolin and rutin, respectively. According to values declared by the manufacturer, differences of 7.4 and 8.0% were calculated for luteolin and rutin, respectively. Results obtained with electroanalytical methodologies were in very good agreement with those obtained by HPLC.
Fil: Tesio, Alvaro Yamil. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Robledo, Sebastian Noel. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Departamento de Tecnología Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Granero, Adrian Marcelo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Fernandez, Hector. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Zon, María Alicia. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Luteolin
Artificial
Neural
Network - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/31815
Ver los metadatos del registro completo
id |
CONICETDig_65bd989eabd36d971f8facc33f8a2140 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/31815 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Simultaneous electroanalytical determination of luteolin and rutin using artificial neural networksTesio, Alvaro YamilRobledo, Sebastian NoelGranero, Adrian MarceloFernandez, HectorZon, María AliciaLuteolinArtificialNeuralNetworkhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In this study, we propose an electroanalytical method to quantify simultaneously luteolin and rutin, two flavonoids which are present in a pharmaceutical formulation. The methodology is based on square wave voltammetry at glassy carbon electrodes modified with multiwalled carbon nanotubes dispersed in polyethylenimine. Both flavonoids show quasi-reversible surface redox couples in 10% ethanol + 1 mol L−1 HClO4 aqueous solutions, which are defined in potential regions very close to each other. The adsorption process of flavonoids on the modified electrode surface was carried out using an accumulation potential of 0.55 V (vs. Ag/AgCl, 3 mol L−1 KCl), and an accumulation time of 20 min. Considering that luteolin and rutin electrochemical responses show a high degree of overlapping, we processed the electrochemical signals using artificial neural networks. We used a supervised network, feed-forward network with Levenberg-Marquardt back propagation training. Values of 92.6 ± 0.4 and 92 ± 1 mg per tablet were determined by the artificial neural networks methodology for luteolin and rutin, respectively. According to values declared by the manufacturer, differences of 7.4 and 8.0% were calculated for luteolin and rutin, respectively. Results obtained with electroanalytical methodologies were in very good agreement with those obtained by HPLC.Fil: Tesio, Alvaro Yamil. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Robledo, Sebastian Noel. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Departamento de Tecnología Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Granero, Adrian Marcelo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fernandez, Hector. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zon, María Alicia. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2014-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/31815Zon, María Alicia; Fernandez, Hector; Granero, Adrian Marcelo; Robledo, Sebastian Noel; Tesio, Alvaro Yamil; Simultaneous electroanalytical determination of luteolin and rutin using artificial neural networks; Elsevier Science; Sensors and Actuators B: Chemical; 203; 7-2014; 655-6620925-4005CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.snb.2014.07.005info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925400514008338info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:08Zoai:ri.conicet.gov.ar:11336/31815instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:08.709CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Simultaneous electroanalytical determination of luteolin and rutin using artificial neural networks |
title |
Simultaneous electroanalytical determination of luteolin and rutin using artificial neural networks |
spellingShingle |
Simultaneous electroanalytical determination of luteolin and rutin using artificial neural networks Tesio, Alvaro Yamil Luteolin Artificial Neural Network |
title_short |
Simultaneous electroanalytical determination of luteolin and rutin using artificial neural networks |
title_full |
Simultaneous electroanalytical determination of luteolin and rutin using artificial neural networks |
title_fullStr |
Simultaneous electroanalytical determination of luteolin and rutin using artificial neural networks |
title_full_unstemmed |
Simultaneous electroanalytical determination of luteolin and rutin using artificial neural networks |
title_sort |
Simultaneous electroanalytical determination of luteolin and rutin using artificial neural networks |
dc.creator.none.fl_str_mv |
Tesio, Alvaro Yamil Robledo, Sebastian Noel Granero, Adrian Marcelo Fernandez, Hector Zon, María Alicia |
author |
Tesio, Alvaro Yamil |
author_facet |
Tesio, Alvaro Yamil Robledo, Sebastian Noel Granero, Adrian Marcelo Fernandez, Hector Zon, María Alicia |
author_role |
author |
author2 |
Robledo, Sebastian Noel Granero, Adrian Marcelo Fernandez, Hector Zon, María Alicia |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Luteolin Artificial Neural Network |
topic |
Luteolin Artificial Neural Network |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this study, we propose an electroanalytical method to quantify simultaneously luteolin and rutin, two flavonoids which are present in a pharmaceutical formulation. The methodology is based on square wave voltammetry at glassy carbon electrodes modified with multiwalled carbon nanotubes dispersed in polyethylenimine. Both flavonoids show quasi-reversible surface redox couples in 10% ethanol + 1 mol L−1 HClO4 aqueous solutions, which are defined in potential regions very close to each other. The adsorption process of flavonoids on the modified electrode surface was carried out using an accumulation potential of 0.55 V (vs. Ag/AgCl, 3 mol L−1 KCl), and an accumulation time of 20 min. Considering that luteolin and rutin electrochemical responses show a high degree of overlapping, we processed the electrochemical signals using artificial neural networks. We used a supervised network, feed-forward network with Levenberg-Marquardt back propagation training. Values of 92.6 ± 0.4 and 92 ± 1 mg per tablet were determined by the artificial neural networks methodology for luteolin and rutin, respectively. According to values declared by the manufacturer, differences of 7.4 and 8.0% were calculated for luteolin and rutin, respectively. Results obtained with electroanalytical methodologies were in very good agreement with those obtained by HPLC. Fil: Tesio, Alvaro Yamil. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Robledo, Sebastian Noel. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Departamento de Tecnología Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Granero, Adrian Marcelo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Fernandez, Hector. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Zon, María Alicia. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In this study, we propose an electroanalytical method to quantify simultaneously luteolin and rutin, two flavonoids which are present in a pharmaceutical formulation. The methodology is based on square wave voltammetry at glassy carbon electrodes modified with multiwalled carbon nanotubes dispersed in polyethylenimine. Both flavonoids show quasi-reversible surface redox couples in 10% ethanol + 1 mol L−1 HClO4 aqueous solutions, which are defined in potential regions very close to each other. The adsorption process of flavonoids on the modified electrode surface was carried out using an accumulation potential of 0.55 V (vs. Ag/AgCl, 3 mol L−1 KCl), and an accumulation time of 20 min. Considering that luteolin and rutin electrochemical responses show a high degree of overlapping, we processed the electrochemical signals using artificial neural networks. We used a supervised network, feed-forward network with Levenberg-Marquardt back propagation training. Values of 92.6 ± 0.4 and 92 ± 1 mg per tablet were determined by the artificial neural networks methodology for luteolin and rutin, respectively. According to values declared by the manufacturer, differences of 7.4 and 8.0% were calculated for luteolin and rutin, respectively. Results obtained with electroanalytical methodologies were in very good agreement with those obtained by HPLC. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/31815 Zon, María Alicia; Fernandez, Hector; Granero, Adrian Marcelo; Robledo, Sebastian Noel; Tesio, Alvaro Yamil; Simultaneous electroanalytical determination of luteolin and rutin using artificial neural networks; Elsevier Science; Sensors and Actuators B: Chemical; 203; 7-2014; 655-662 0925-4005 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/31815 |
identifier_str_mv |
Zon, María Alicia; Fernandez, Hector; Granero, Adrian Marcelo; Robledo, Sebastian Noel; Tesio, Alvaro Yamil; Simultaneous electroanalytical determination of luteolin and rutin using artificial neural networks; Elsevier Science; Sensors and Actuators B: Chemical; 203; 7-2014; 655-662 0925-4005 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.snb.2014.07.005 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925400514008338 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269678166081536 |
score |
13.13397 |