Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks
- Autores
- Minari, Roque Javier; Stegmayer, Georgina; Gugliotta, Luis Marcelino; Chiotti, Omar Juan Alfredo; Vega, Jorge Ruben
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work investigates the industrial production of styrene-butadiene rubber in a continuous reactor train, and proposes a soft sensor for online monitoring of several processes and polymer quality variables in each reactor. The soft sensor includes two independent artificial neural networks (ANN). The firstANNestimatesmonomer conversion, solid content, polymer production, average particle diameter, and average copolymer composition; the second ANN estimates average molecular weights and average branching degrees. The required ANN inputs are: (i) the reagent feed rates into the first reactor and (ii) the reaction heat rate in each reactor. The proposed ANN-based soft sensor proved robust to several measurement errors, and is suitable for online estimation and closedloop control strategies.
Fil: Minari, Roque Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Stegmayer, Georgina. Universidad Tecnológica Nacional; Argentina
Fil: Gugliotta, Luis Marcelino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Vega, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
Neural Network
Sbr Production
Process Monitoring - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/26086
Ver los metadatos del registro completo
id |
CONICETDig_70790dffa16bca9922e0642ae8eaee40 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/26086 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural NetworksMinari, Roque JavierStegmayer, GeorginaGugliotta, Luis MarcelinoChiotti, Omar Juan AlfredoVega, Jorge RubenNeural NetworkSbr ProductionProcess Monitoringhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2This work investigates the industrial production of styrene-butadiene rubber in a continuous reactor train, and proposes a soft sensor for online monitoring of several processes and polymer quality variables in each reactor. The soft sensor includes two independent artificial neural networks (ANN). The firstANNestimatesmonomer conversion, solid content, polymer production, average particle diameter, and average copolymer composition; the second ANN estimates average molecular weights and average branching degrees. The required ANN inputs are: (i) the reagent feed rates into the first reactor and (ii) the reaction heat rate in each reactor. The proposed ANN-based soft sensor proved robust to several measurement errors, and is suitable for online estimation and closedloop control strategies.Fil: Minari, Roque Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Stegmayer, Georgina. Universidad Tecnológica Nacional; ArgentinaFil: Gugliotta, Luis Marcelino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Vega, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaWiley VCH Verlag2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26086Minari, Roque Javier; Stegmayer, Georgina; Gugliotta, Luis Marcelino; Chiotti, Omar Juan Alfredo; Vega, Jorge Ruben; Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks; Wiley VCH Verlag; Macromolecular Reaction Engineering; 1; 3; 12-2007; 405-4121862-832XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/mren.200600042info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/mren.200600042/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:09Zoai:ri.conicet.gov.ar:11336/26086instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:09.772CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks |
title |
Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks |
spellingShingle |
Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks Minari, Roque Javier Neural Network Sbr Production Process Monitoring |
title_short |
Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks |
title_full |
Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks |
title_fullStr |
Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks |
title_full_unstemmed |
Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks |
title_sort |
Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks |
dc.creator.none.fl_str_mv |
Minari, Roque Javier Stegmayer, Georgina Gugliotta, Luis Marcelino Chiotti, Omar Juan Alfredo Vega, Jorge Ruben |
author |
Minari, Roque Javier |
author_facet |
Minari, Roque Javier Stegmayer, Georgina Gugliotta, Luis Marcelino Chiotti, Omar Juan Alfredo Vega, Jorge Ruben |
author_role |
author |
author2 |
Stegmayer, Georgina Gugliotta, Luis Marcelino Chiotti, Omar Juan Alfredo Vega, Jorge Ruben |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Neural Network Sbr Production Process Monitoring |
topic |
Neural Network Sbr Production Process Monitoring |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This work investigates the industrial production of styrene-butadiene rubber in a continuous reactor train, and proposes a soft sensor for online monitoring of several processes and polymer quality variables in each reactor. The soft sensor includes two independent artificial neural networks (ANN). The firstANNestimatesmonomer conversion, solid content, polymer production, average particle diameter, and average copolymer composition; the second ANN estimates average molecular weights and average branching degrees. The required ANN inputs are: (i) the reagent feed rates into the first reactor and (ii) the reaction heat rate in each reactor. The proposed ANN-based soft sensor proved robust to several measurement errors, and is suitable for online estimation and closedloop control strategies. Fil: Minari, Roque Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Stegmayer, Georgina. Universidad Tecnológica Nacional; Argentina Fil: Gugliotta, Luis Marcelino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Vega, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
description |
This work investigates the industrial production of styrene-butadiene rubber in a continuous reactor train, and proposes a soft sensor for online monitoring of several processes and polymer quality variables in each reactor. The soft sensor includes two independent artificial neural networks (ANN). The firstANNestimatesmonomer conversion, solid content, polymer production, average particle diameter, and average copolymer composition; the second ANN estimates average molecular weights and average branching degrees. The required ANN inputs are: (i) the reagent feed rates into the first reactor and (ii) the reaction heat rate in each reactor. The proposed ANN-based soft sensor proved robust to several measurement errors, and is suitable for online estimation and closedloop control strategies. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/26086 Minari, Roque Javier; Stegmayer, Georgina; Gugliotta, Luis Marcelino; Chiotti, Omar Juan Alfredo; Vega, Jorge Ruben; Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks; Wiley VCH Verlag; Macromolecular Reaction Engineering; 1; 3; 12-2007; 405-412 1862-832X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/26086 |
identifier_str_mv |
Minari, Roque Javier; Stegmayer, Georgina; Gugliotta, Luis Marcelino; Chiotti, Omar Juan Alfredo; Vega, Jorge Ruben; Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks; Wiley VCH Verlag; Macromolecular Reaction Engineering; 1; 3; 12-2007; 405-412 1862-832X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/mren.200600042 info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/mren.200600042/abstract |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley VCH Verlag |
publisher.none.fl_str_mv |
Wiley VCH Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613600984956928 |
score |
13.070432 |