Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks

Autores
Minari, Roque Javier; Stegmayer, Georgina; Gugliotta, Luis Marcelino; Chiotti, Omar Juan Alfredo; Vega, Jorge Ruben
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This work investigates the industrial production of styrene-butadiene rubber in a continuous reactor train, and proposes a soft sensor for online monitoring of several processes and polymer quality variables in each reactor. The soft sensor includes two independent artificial neural networks (ANN). The firstANNestimatesmonomer conversion, solid content, polymer production, average particle diameter, and average copolymer composition; the second ANN estimates average molecular weights and average branching degrees. The required ANN inputs are: (i) the reagent feed rates into the first reactor and (ii) the reaction heat rate in each reactor. The proposed ANN-based soft sensor proved robust to several measurement errors, and is suitable for online estimation and closedloop control strategies.
Fil: Minari, Roque Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Stegmayer, Georgina. Universidad Tecnológica Nacional; Argentina
Fil: Gugliotta, Luis Marcelino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Vega, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Materia
Neural Network
Sbr Production
Process Monitoring
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/26086

id CONICETDig_70790dffa16bca9922e0642ae8eaee40
oai_identifier_str oai:ri.conicet.gov.ar:11336/26086
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural NetworksMinari, Roque JavierStegmayer, GeorginaGugliotta, Luis MarcelinoChiotti, Omar Juan AlfredoVega, Jorge RubenNeural NetworkSbr ProductionProcess Monitoringhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2This work investigates the industrial production of styrene-butadiene rubber in a continuous reactor train, and proposes a soft sensor for online monitoring of several processes and polymer quality variables in each reactor. The soft sensor includes two independent artificial neural networks (ANN). The firstANNestimatesmonomer conversion, solid content, polymer production, average particle diameter, and average copolymer composition; the second ANN estimates average molecular weights and average branching degrees. The required ANN inputs are: (i) the reagent feed rates into the first reactor and (ii) the reaction heat rate in each reactor. The proposed ANN-based soft sensor proved robust to several measurement errors, and is suitable for online estimation and closedloop control strategies.Fil: Minari, Roque Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Stegmayer, Georgina. Universidad Tecnológica Nacional; ArgentinaFil: Gugliotta, Luis Marcelino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Vega, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaWiley VCH Verlag2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26086Minari, Roque Javier; Stegmayer, Georgina; Gugliotta, Luis Marcelino; Chiotti, Omar Juan Alfredo; Vega, Jorge Ruben; Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks; Wiley VCH Verlag; Macromolecular Reaction Engineering; 1; 3; 12-2007; 405-4121862-832XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/mren.200600042info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/mren.200600042/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:09Zoai:ri.conicet.gov.ar:11336/26086instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:09.772CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks
title Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks
spellingShingle Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks
Minari, Roque Javier
Neural Network
Sbr Production
Process Monitoring
title_short Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks
title_full Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks
title_fullStr Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks
title_full_unstemmed Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks
title_sort Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks
dc.creator.none.fl_str_mv Minari, Roque Javier
Stegmayer, Georgina
Gugliotta, Luis Marcelino
Chiotti, Omar Juan Alfredo
Vega, Jorge Ruben
author Minari, Roque Javier
author_facet Minari, Roque Javier
Stegmayer, Georgina
Gugliotta, Luis Marcelino
Chiotti, Omar Juan Alfredo
Vega, Jorge Ruben
author_role author
author2 Stegmayer, Georgina
Gugliotta, Luis Marcelino
Chiotti, Omar Juan Alfredo
Vega, Jorge Ruben
author2_role author
author
author
author
dc.subject.none.fl_str_mv Neural Network
Sbr Production
Process Monitoring
topic Neural Network
Sbr Production
Process Monitoring
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This work investigates the industrial production of styrene-butadiene rubber in a continuous reactor train, and proposes a soft sensor for online monitoring of several processes and polymer quality variables in each reactor. The soft sensor includes two independent artificial neural networks (ANN). The firstANNestimatesmonomer conversion, solid content, polymer production, average particle diameter, and average copolymer composition; the second ANN estimates average molecular weights and average branching degrees. The required ANN inputs are: (i) the reagent feed rates into the first reactor and (ii) the reaction heat rate in each reactor. The proposed ANN-based soft sensor proved robust to several measurement errors, and is suitable for online estimation and closedloop control strategies.
Fil: Minari, Roque Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Stegmayer, Georgina. Universidad Tecnológica Nacional; Argentina
Fil: Gugliotta, Luis Marcelino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Chiotti, Omar Juan Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Vega, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
description This work investigates the industrial production of styrene-butadiene rubber in a continuous reactor train, and proposes a soft sensor for online monitoring of several processes and polymer quality variables in each reactor. The soft sensor includes two independent artificial neural networks (ANN). The firstANNestimatesmonomer conversion, solid content, polymer production, average particle diameter, and average copolymer composition; the second ANN estimates average molecular weights and average branching degrees. The required ANN inputs are: (i) the reagent feed rates into the first reactor and (ii) the reaction heat rate in each reactor. The proposed ANN-based soft sensor proved robust to several measurement errors, and is suitable for online estimation and closedloop control strategies.
publishDate 2007
dc.date.none.fl_str_mv 2007-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/26086
Minari, Roque Javier; Stegmayer, Georgina; Gugliotta, Luis Marcelino; Chiotti, Omar Juan Alfredo; Vega, Jorge Ruben; Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks; Wiley VCH Verlag; Macromolecular Reaction Engineering; 1; 3; 12-2007; 405-412
1862-832X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/26086
identifier_str_mv Minari, Roque Javier; Stegmayer, Georgina; Gugliotta, Luis Marcelino; Chiotti, Omar Juan Alfredo; Vega, Jorge Ruben; Industrial SBR Process. Computer Simulation Study for On-line Estimation of Steady-State Variables Using Neural Networks; Wiley VCH Verlag; Macromolecular Reaction Engineering; 1; 3; 12-2007; 405-412
1862-832X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/mren.200600042
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/mren.200600042/abstract
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley VCH Verlag
publisher.none.fl_str_mv Wiley VCH Verlag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613600984956928
score 13.070432