Bayesian probabilistic modeling for four-top production at the LHC
- Autores
- Alvarez, Ezequiel; Dillon, Barry M.; Faroughy, Darius A.; Kamenik, Jernej F.; Lamagna, Federico Agustín; Szewc, Manuel
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Monte Carlo (MC) generators are crucial for analyzing data in particle collider experiments. However, often even a small mismatch between the MC simulations and the measurements can undermine the interpretation of the results. This is particularly important in the context of LHC searches for rare physics processes within and beyond the standard model (SM). One of the ultimate rare processes in the SM currently being explored at the LHC, pp→tt¯tt¯ with its large multidimensional phase-space is an ideal testing ground to explore new ways to reduce the impact of potential MC mismodeling on experimental results. We propose a novel statistical method capable of disentangling the 4-top signal from the dominant backgrounds in the same-sign dilepton channel, while simultaneously correcting for possible MC imperfections in modeling of the most relevant discriminating observables - the jet multiplicity distributions. A Bayesian mixture of multinomials is used to model the light-jet and b-jet multiplicities under the assumption of their conditional independence. The signal and background distributions generated from a deliberately mistuned MC simulator are used as model priors. The posterior distributions, as well as the signal and background fractions, are then learned from the data using Bayesian inference. We demonstrate that our method can mitigate the effects of large MC mismodelings in the context of a realistic tt¯tt¯ search, leading to corrected posterior distributions that better approximate the underlying truth-level spectra.
Fil: Alvarez, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; Argentina
Fil: Dillon, Barry M.. Ruprecht Karls Universitat Heidelberg; Alemania
Fil: Faroughy, Darius A.. Universitat Zurich; Suiza
Fil: Kamenik, Jernej F.. Universitat Zurich; Suiza
Fil: Lamagna, Federico Agustín. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Szewc, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; Argentina - Materia
-
lhc
top
bayesian inference
Nj and Nb - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/212924
Ver los metadatos del registro completo
id |
CONICETDig_77459340a9173406c0b3df12702c6c6b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/212924 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Bayesian probabilistic modeling for four-top production at the LHCAlvarez, EzequielDillon, Barry M.Faroughy, Darius A.Kamenik, Jernej F.Lamagna, Federico AgustínSzewc, Manuellhctopbayesian inferenceNj and Nbhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Monte Carlo (MC) generators are crucial for analyzing data in particle collider experiments. However, often even a small mismatch between the MC simulations and the measurements can undermine the interpretation of the results. This is particularly important in the context of LHC searches for rare physics processes within and beyond the standard model (SM). One of the ultimate rare processes in the SM currently being explored at the LHC, pp→tt¯tt¯ with its large multidimensional phase-space is an ideal testing ground to explore new ways to reduce the impact of potential MC mismodeling on experimental results. We propose a novel statistical method capable of disentangling the 4-top signal from the dominant backgrounds in the same-sign dilepton channel, while simultaneously correcting for possible MC imperfections in modeling of the most relevant discriminating observables - the jet multiplicity distributions. A Bayesian mixture of multinomials is used to model the light-jet and b-jet multiplicities under the assumption of their conditional independence. The signal and background distributions generated from a deliberately mistuned MC simulator are used as model priors. The posterior distributions, as well as the signal and background fractions, are then learned from the data using Bayesian inference. We demonstrate that our method can mitigate the effects of large MC mismodelings in the context of a realistic tt¯tt¯ search, leading to corrected posterior distributions that better approximate the underlying truth-level spectra.Fil: Alvarez, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; ArgentinaFil: Dillon, Barry M.. Ruprecht Karls Universitat Heidelberg; AlemaniaFil: Faroughy, Darius A.. Universitat Zurich; SuizaFil: Kamenik, Jernej F.. Universitat Zurich; SuizaFil: Lamagna, Federico Agustín. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Szewc, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; ArgentinaAmerican Physical Society2022-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/212924Alvarez, Ezequiel; Dillon, Barry M.; Faroughy, Darius A.; Kamenik, Jernej F.; Lamagna, Federico Agustín; et al.; Bayesian probabilistic modeling for four-top production at the LHC; American Physical Society; Physical Review D; 105; 9; 5-2022; 1-110556-28212470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.105.092001info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.092001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:09:50Zoai:ri.conicet.gov.ar:11336/212924instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:09:50.972CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Bayesian probabilistic modeling for four-top production at the LHC |
title |
Bayesian probabilistic modeling for four-top production at the LHC |
spellingShingle |
Bayesian probabilistic modeling for four-top production at the LHC Alvarez, Ezequiel lhc top bayesian inference Nj and Nb |
title_short |
Bayesian probabilistic modeling for four-top production at the LHC |
title_full |
Bayesian probabilistic modeling for four-top production at the LHC |
title_fullStr |
Bayesian probabilistic modeling for four-top production at the LHC |
title_full_unstemmed |
Bayesian probabilistic modeling for four-top production at the LHC |
title_sort |
Bayesian probabilistic modeling for four-top production at the LHC |
dc.creator.none.fl_str_mv |
Alvarez, Ezequiel Dillon, Barry M. Faroughy, Darius A. Kamenik, Jernej F. Lamagna, Federico Agustín Szewc, Manuel |
author |
Alvarez, Ezequiel |
author_facet |
Alvarez, Ezequiel Dillon, Barry M. Faroughy, Darius A. Kamenik, Jernej F. Lamagna, Federico Agustín Szewc, Manuel |
author_role |
author |
author2 |
Dillon, Barry M. Faroughy, Darius A. Kamenik, Jernej F. Lamagna, Federico Agustín Szewc, Manuel |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
lhc top bayesian inference Nj and Nb |
topic |
lhc top bayesian inference Nj and Nb |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Monte Carlo (MC) generators are crucial for analyzing data in particle collider experiments. However, often even a small mismatch between the MC simulations and the measurements can undermine the interpretation of the results. This is particularly important in the context of LHC searches for rare physics processes within and beyond the standard model (SM). One of the ultimate rare processes in the SM currently being explored at the LHC, pp→tt¯tt¯ with its large multidimensional phase-space is an ideal testing ground to explore new ways to reduce the impact of potential MC mismodeling on experimental results. We propose a novel statistical method capable of disentangling the 4-top signal from the dominant backgrounds in the same-sign dilepton channel, while simultaneously correcting for possible MC imperfections in modeling of the most relevant discriminating observables - the jet multiplicity distributions. A Bayesian mixture of multinomials is used to model the light-jet and b-jet multiplicities under the assumption of their conditional independence. The signal and background distributions generated from a deliberately mistuned MC simulator are used as model priors. The posterior distributions, as well as the signal and background fractions, are then learned from the data using Bayesian inference. We demonstrate that our method can mitigate the effects of large MC mismodelings in the context of a realistic tt¯tt¯ search, leading to corrected posterior distributions that better approximate the underlying truth-level spectra. Fil: Alvarez, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; Argentina Fil: Dillon, Barry M.. Ruprecht Karls Universitat Heidelberg; Alemania Fil: Faroughy, Darius A.. Universitat Zurich; Suiza Fil: Kamenik, Jernej F.. Universitat Zurich; Suiza Fil: Lamagna, Federico Agustín. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Szewc, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; Argentina |
description |
Monte Carlo (MC) generators are crucial for analyzing data in particle collider experiments. However, often even a small mismatch between the MC simulations and the measurements can undermine the interpretation of the results. This is particularly important in the context of LHC searches for rare physics processes within and beyond the standard model (SM). One of the ultimate rare processes in the SM currently being explored at the LHC, pp→tt¯tt¯ with its large multidimensional phase-space is an ideal testing ground to explore new ways to reduce the impact of potential MC mismodeling on experimental results. We propose a novel statistical method capable of disentangling the 4-top signal from the dominant backgrounds in the same-sign dilepton channel, while simultaneously correcting for possible MC imperfections in modeling of the most relevant discriminating observables - the jet multiplicity distributions. A Bayesian mixture of multinomials is used to model the light-jet and b-jet multiplicities under the assumption of their conditional independence. The signal and background distributions generated from a deliberately mistuned MC simulator are used as model priors. The posterior distributions, as well as the signal and background fractions, are then learned from the data using Bayesian inference. We demonstrate that our method can mitigate the effects of large MC mismodelings in the context of a realistic tt¯tt¯ search, leading to corrected posterior distributions that better approximate the underlying truth-level spectra. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/212924 Alvarez, Ezequiel; Dillon, Barry M.; Faroughy, Darius A.; Kamenik, Jernej F.; Lamagna, Federico Agustín; et al.; Bayesian probabilistic modeling for four-top production at the LHC; American Physical Society; Physical Review D; 105; 9; 5-2022; 1-11 0556-2821 2470-0029 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/212924 |
identifier_str_mv |
Alvarez, Ezequiel; Dillon, Barry M.; Faroughy, Darius A.; Kamenik, Jernej F.; Lamagna, Federico Agustín; et al.; Bayesian probabilistic modeling for four-top production at the LHC; American Physical Society; Physical Review D; 105; 9; 5-2022; 1-11 0556-2821 2470-0029 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.105.092001 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.092001 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980489083748352 |
score |
12.993085 |