Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference

Autores
Echeveste, Rodrigo Sebastián; Ferrante, Enzo; Milone, Diego Humberto; Samengo, Ines
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Theories for autism spectrum disorder (ASD) have been formulated at different levels, ranging from physiological observations to perceptual and behavioral descriptions. Understanding the physiological underpinnings of perceptual traits in ASD remains a significant challenge in the field. Here we show how a recurrent neural circuit model that was optimized to perform sampling-based inference and displays characteristic features of cortical dynamics can help bridge this gap. The model was able to establish a mechanistic link between two descriptive levels for ASD: a physiological level, in terms of inhibitory dysfunction, neural variability, and oscillations, and a perceptual level, in terms of hypopriors in Bayesian computations. We took two parallel paths—inducing hypopriors in the probabilistic model, and an inhibitory dysfunction in the network model—which lead to consistent results in terms of the represented posteriors, providing support for the view that both descriptions might constitute two sides of the same coin.
Fil: Echeveste, Rodrigo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Samengo, Ines. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
AUTISM
HYPOPRIORS
INHIBITORY DYSFUNCTION
NEURAL CIRCUITS
SAMPLING-BASED INFERENCE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/216278

id CONICETDig_8ed5c36b4befc0edfe24fe1a141dc5d6
oai_identifier_str oai:ri.conicet.gov.ar:11336/216278
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inferenceEcheveste, Rodrigo SebastiánFerrante, EnzoMilone, Diego HumbertoSamengo, InesAUTISMHYPOPRIORSINHIBITORY DYSFUNCTIONNEURAL CIRCUITSSAMPLING-BASED INFERENCEhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Theories for autism spectrum disorder (ASD) have been formulated at different levels, ranging from physiological observations to perceptual and behavioral descriptions. Understanding the physiological underpinnings of perceptual traits in ASD remains a significant challenge in the field. Here we show how a recurrent neural circuit model that was optimized to perform sampling-based inference and displays characteristic features of cortical dynamics can help bridge this gap. The model was able to establish a mechanistic link between two descriptive levels for ASD: a physiological level, in terms of inhibitory dysfunction, neural variability, and oscillations, and a perceptual level, in terms of hypopriors in Bayesian computations. We took two parallel paths—inducing hypopriors in the probabilistic model, and an inhibitory dysfunction in the network model—which lead to consistent results in terms of the represented posteriors, providing support for the view that both descriptions might constitute two sides of the same coin.Fil: Echeveste, Rodrigo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Samengo, Ines. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMIT Press2022-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/216278Echeveste, Rodrigo Sebastián; Ferrante, Enzo; Milone, Diego Humberto; Samengo, Ines; Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference; MIT Press; Network Neuroscience; 6; 1; 3-2022; 196-2122472-1751CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://direct.mit.edu/netn/article/6/1/196/108677/Bridging-physiological-and-perceptual-views-ofinfo:eu-repo/semantics/altIdentifier/doi/10.1162/netn_a_00219info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:20Zoai:ri.conicet.gov.ar:11336/216278instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:20.978CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference
title Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference
spellingShingle Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference
Echeveste, Rodrigo Sebastián
AUTISM
HYPOPRIORS
INHIBITORY DYSFUNCTION
NEURAL CIRCUITS
SAMPLING-BASED INFERENCE
title_short Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference
title_full Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference
title_fullStr Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference
title_full_unstemmed Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference
title_sort Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference
dc.creator.none.fl_str_mv Echeveste, Rodrigo Sebastián
Ferrante, Enzo
Milone, Diego Humberto
Samengo, Ines
author Echeveste, Rodrigo Sebastián
author_facet Echeveste, Rodrigo Sebastián
Ferrante, Enzo
Milone, Diego Humberto
Samengo, Ines
author_role author
author2 Ferrante, Enzo
Milone, Diego Humberto
Samengo, Ines
author2_role author
author
author
dc.subject.none.fl_str_mv AUTISM
HYPOPRIORS
INHIBITORY DYSFUNCTION
NEURAL CIRCUITS
SAMPLING-BASED INFERENCE
topic AUTISM
HYPOPRIORS
INHIBITORY DYSFUNCTION
NEURAL CIRCUITS
SAMPLING-BASED INFERENCE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Theories for autism spectrum disorder (ASD) have been formulated at different levels, ranging from physiological observations to perceptual and behavioral descriptions. Understanding the physiological underpinnings of perceptual traits in ASD remains a significant challenge in the field. Here we show how a recurrent neural circuit model that was optimized to perform sampling-based inference and displays characteristic features of cortical dynamics can help bridge this gap. The model was able to establish a mechanistic link between two descriptive levels for ASD: a physiological level, in terms of inhibitory dysfunction, neural variability, and oscillations, and a perceptual level, in terms of hypopriors in Bayesian computations. We took two parallel paths—inducing hypopriors in the probabilistic model, and an inhibitory dysfunction in the network model—which lead to consistent results in terms of the represented posteriors, providing support for the view that both descriptions might constitute two sides of the same coin.
Fil: Echeveste, Rodrigo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Samengo, Ines. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Theories for autism spectrum disorder (ASD) have been formulated at different levels, ranging from physiological observations to perceptual and behavioral descriptions. Understanding the physiological underpinnings of perceptual traits in ASD remains a significant challenge in the field. Here we show how a recurrent neural circuit model that was optimized to perform sampling-based inference and displays characteristic features of cortical dynamics can help bridge this gap. The model was able to establish a mechanistic link between two descriptive levels for ASD: a physiological level, in terms of inhibitory dysfunction, neural variability, and oscillations, and a perceptual level, in terms of hypopriors in Bayesian computations. We took two parallel paths—inducing hypopriors in the probabilistic model, and an inhibitory dysfunction in the network model—which lead to consistent results in terms of the represented posteriors, providing support for the view that both descriptions might constitute two sides of the same coin.
publishDate 2022
dc.date.none.fl_str_mv 2022-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/216278
Echeveste, Rodrigo Sebastián; Ferrante, Enzo; Milone, Diego Humberto; Samengo, Ines; Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference; MIT Press; Network Neuroscience; 6; 1; 3-2022; 196-212
2472-1751
CONICET Digital
CONICET
url http://hdl.handle.net/11336/216278
identifier_str_mv Echeveste, Rodrigo Sebastián; Ferrante, Enzo; Milone, Diego Humberto; Samengo, Ines; Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference; MIT Press; Network Neuroscience; 6; 1; 3-2022; 196-212
2472-1751
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://direct.mit.edu/netn/article/6/1/196/108677/Bridging-physiological-and-perceptual-views-of
info:eu-repo/semantics/altIdentifier/doi/10.1162/netn_a_00219
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv MIT Press
publisher.none.fl_str_mv MIT Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613578678599680
score 13.070432