Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference
- Autores
- Echeveste, Rodrigo Sebastián; Ferrante, Enzo; Milone, Diego Humberto; Samengo, Ines
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Theories for autism spectrum disorder (ASD) have been formulated at different levels, ranging from physiological observations to perceptual and behavioral descriptions. Understanding the physiological underpinnings of perceptual traits in ASD remains a significant challenge in the field. Here we show how a recurrent neural circuit model that was optimized to perform sampling-based inference and displays characteristic features of cortical dynamics can help bridge this gap. The model was able to establish a mechanistic link between two descriptive levels for ASD: a physiological level, in terms of inhibitory dysfunction, neural variability, and oscillations, and a perceptual level, in terms of hypopriors in Bayesian computations. We took two parallel paths—inducing hypopriors in the probabilistic model, and an inhibitory dysfunction in the network model—which lead to consistent results in terms of the represented posteriors, providing support for the view that both descriptions might constitute two sides of the same coin.
Fil: Echeveste, Rodrigo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Samengo, Ines. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
AUTISM
HYPOPRIORS
INHIBITORY DYSFUNCTION
NEURAL CIRCUITS
SAMPLING-BASED INFERENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/216278
Ver los metadatos del registro completo
id |
CONICETDig_8ed5c36b4befc0edfe24fe1a141dc5d6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/216278 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inferenceEcheveste, Rodrigo SebastiánFerrante, EnzoMilone, Diego HumbertoSamengo, InesAUTISMHYPOPRIORSINHIBITORY DYSFUNCTIONNEURAL CIRCUITSSAMPLING-BASED INFERENCEhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Theories for autism spectrum disorder (ASD) have been formulated at different levels, ranging from physiological observations to perceptual and behavioral descriptions. Understanding the physiological underpinnings of perceptual traits in ASD remains a significant challenge in the field. Here we show how a recurrent neural circuit model that was optimized to perform sampling-based inference and displays characteristic features of cortical dynamics can help bridge this gap. The model was able to establish a mechanistic link between two descriptive levels for ASD: a physiological level, in terms of inhibitory dysfunction, neural variability, and oscillations, and a perceptual level, in terms of hypopriors in Bayesian computations. We took two parallel paths—inducing hypopriors in the probabilistic model, and an inhibitory dysfunction in the network model—which lead to consistent results in terms of the represented posteriors, providing support for the view that both descriptions might constitute two sides of the same coin.Fil: Echeveste, Rodrigo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Samengo, Ines. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMIT Press2022-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/216278Echeveste, Rodrigo Sebastián; Ferrante, Enzo; Milone, Diego Humberto; Samengo, Ines; Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference; MIT Press; Network Neuroscience; 6; 1; 3-2022; 196-2122472-1751CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://direct.mit.edu/netn/article/6/1/196/108677/Bridging-physiological-and-perceptual-views-ofinfo:eu-repo/semantics/altIdentifier/doi/10.1162/netn_a_00219info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:20Zoai:ri.conicet.gov.ar:11336/216278instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:20.978CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference |
title |
Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference |
spellingShingle |
Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference Echeveste, Rodrigo Sebastián AUTISM HYPOPRIORS INHIBITORY DYSFUNCTION NEURAL CIRCUITS SAMPLING-BASED INFERENCE |
title_short |
Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference |
title_full |
Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference |
title_fullStr |
Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference |
title_full_unstemmed |
Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference |
title_sort |
Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference |
dc.creator.none.fl_str_mv |
Echeveste, Rodrigo Sebastián Ferrante, Enzo Milone, Diego Humberto Samengo, Ines |
author |
Echeveste, Rodrigo Sebastián |
author_facet |
Echeveste, Rodrigo Sebastián Ferrante, Enzo Milone, Diego Humberto Samengo, Ines |
author_role |
author |
author2 |
Ferrante, Enzo Milone, Diego Humberto Samengo, Ines |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
AUTISM HYPOPRIORS INHIBITORY DYSFUNCTION NEURAL CIRCUITS SAMPLING-BASED INFERENCE |
topic |
AUTISM HYPOPRIORS INHIBITORY DYSFUNCTION NEURAL CIRCUITS SAMPLING-BASED INFERENCE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Theories for autism spectrum disorder (ASD) have been formulated at different levels, ranging from physiological observations to perceptual and behavioral descriptions. Understanding the physiological underpinnings of perceptual traits in ASD remains a significant challenge in the field. Here we show how a recurrent neural circuit model that was optimized to perform sampling-based inference and displays characteristic features of cortical dynamics can help bridge this gap. The model was able to establish a mechanistic link between two descriptive levels for ASD: a physiological level, in terms of inhibitory dysfunction, neural variability, and oscillations, and a perceptual level, in terms of hypopriors in Bayesian computations. We took two parallel paths—inducing hypopriors in the probabilistic model, and an inhibitory dysfunction in the network model—which lead to consistent results in terms of the represented posteriors, providing support for the view that both descriptions might constitute two sides of the same coin. Fil: Echeveste, Rodrigo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Samengo, Ines. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Theories for autism spectrum disorder (ASD) have been formulated at different levels, ranging from physiological observations to perceptual and behavioral descriptions. Understanding the physiological underpinnings of perceptual traits in ASD remains a significant challenge in the field. Here we show how a recurrent neural circuit model that was optimized to perform sampling-based inference and displays characteristic features of cortical dynamics can help bridge this gap. The model was able to establish a mechanistic link between two descriptive levels for ASD: a physiological level, in terms of inhibitory dysfunction, neural variability, and oscillations, and a perceptual level, in terms of hypopriors in Bayesian computations. We took two parallel paths—inducing hypopriors in the probabilistic model, and an inhibitory dysfunction in the network model—which lead to consistent results in terms of the represented posteriors, providing support for the view that both descriptions might constitute two sides of the same coin. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/216278 Echeveste, Rodrigo Sebastián; Ferrante, Enzo; Milone, Diego Humberto; Samengo, Ines; Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference; MIT Press; Network Neuroscience; 6; 1; 3-2022; 196-212 2472-1751 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/216278 |
identifier_str_mv |
Echeveste, Rodrigo Sebastián; Ferrante, Enzo; Milone, Diego Humberto; Samengo, Ines; Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference; MIT Press; Network Neuroscience; 6; 1; 3-2022; 196-212 2472-1751 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://direct.mit.edu/netn/article/6/1/196/108677/Bridging-physiological-and-perceptual-views-of info:eu-repo/semantics/altIdentifier/doi/10.1162/netn_a_00219 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MIT Press |
publisher.none.fl_str_mv |
MIT Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613578678599680 |
score |
13.070432 |