Percolation phase transition by removal of k2 -mers from fully occupied lattices
- Autores
- Ramírez, Lucía Soledad; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Numerical simulations and finite-size scaling analysis have been carried out to study the problem of inverse site percolation by the removal of k×k square tiles (k2-mers) from square lattices. The process starts with an initial configuration, where all lattice sites are occupied and, obviously, the opposite sides of the lattice are connected by occupied sites. Then the system is diluted by removing k2-mers of occupied sites from the lattice following a random sequential adsorption mechanism. The process finishes when the jamming state is reached and no more objects can be removed due to the absence of occupied sites clusters of appropriate size and shape. The central idea of this paper is based on finding the maximum concentration of occupied sites, pc,k, for which the connectivity disappears. This particular value of the concentration is called the inverse percolation threshold and determines a well-defined geometrical phase transition in the system. The results obtained for pc,k show that the inverse percolation threshold is a decreasing function of k in the range 1≤k≤4. For k≥5, all jammed configurations are percolating states, and consequently, there is no nonpercolating phase. In other words, the lattice remains connected even when the highest allowed concentration of removed sites is reached. The jamming exponent νj was measured, being νj=1 regardless of the size k considered. In addition, the accurate determination of the critical exponents ν, β, and γ reveals that the percolation phase transition involved in the system, which occurs for k varying between one and four, has the same universality class as the standard percolation problem.
Fil: Ramírez, Lucía Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina - Materia
-
Jamming
Percolation
Phase transition
Monte Carlo - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/117000
Ver los metadatos del registro completo
id |
CONICETDig_0ed857f4c870c74045bf258efe20249b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/117000 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Percolation phase transition by removal of k2 -mers from fully occupied latticesRamírez, Lucía SoledadCentres, Paulo MarceloRamirez Pastor, Antonio JoseJammingPercolationPhase transitionMonte Carlohttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Numerical simulations and finite-size scaling analysis have been carried out to study the problem of inverse site percolation by the removal of k×k square tiles (k2-mers) from square lattices. The process starts with an initial configuration, where all lattice sites are occupied and, obviously, the opposite sides of the lattice are connected by occupied sites. Then the system is diluted by removing k2-mers of occupied sites from the lattice following a random sequential adsorption mechanism. The process finishes when the jamming state is reached and no more objects can be removed due to the absence of occupied sites clusters of appropriate size and shape. The central idea of this paper is based on finding the maximum concentration of occupied sites, pc,k, for which the connectivity disappears. This particular value of the concentration is called the inverse percolation threshold and determines a well-defined geometrical phase transition in the system. The results obtained for pc,k show that the inverse percolation threshold is a decreasing function of k in the range 1≤k≤4. For k≥5, all jammed configurations are percolating states, and consequently, there is no nonpercolating phase. In other words, the lattice remains connected even when the highest allowed concentration of removed sites is reached. The jamming exponent νj was measured, being νj=1 regardless of the size k considered. In addition, the accurate determination of the critical exponents ν, β, and γ reveals that the percolation phase transition involved in the system, which occurs for k varying between one and four, has the same universality class as the standard percolation problem.Fil: Ramírez, Lucía Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaAmerican Physical Society2019-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/117000Ramírez, Lucía Soledad; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Percolation phase transition by removal of k2 -mers from fully occupied lattices; American Physical Society; Physical Review E; 100; 3; 9-2019; 1-12; 0321052470-0045CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.100.032105info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.100.032105info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:49Zoai:ri.conicet.gov.ar:11336/117000instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:49.729CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Percolation phase transition by removal of k2 -mers from fully occupied lattices |
title |
Percolation phase transition by removal of k2 -mers from fully occupied lattices |
spellingShingle |
Percolation phase transition by removal of k2 -mers from fully occupied lattices Ramírez, Lucía Soledad Jamming Percolation Phase transition Monte Carlo |
title_short |
Percolation phase transition by removal of k2 -mers from fully occupied lattices |
title_full |
Percolation phase transition by removal of k2 -mers from fully occupied lattices |
title_fullStr |
Percolation phase transition by removal of k2 -mers from fully occupied lattices |
title_full_unstemmed |
Percolation phase transition by removal of k2 -mers from fully occupied lattices |
title_sort |
Percolation phase transition by removal of k2 -mers from fully occupied lattices |
dc.creator.none.fl_str_mv |
Ramírez, Lucía Soledad Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose |
author |
Ramírez, Lucía Soledad |
author_facet |
Ramírez, Lucía Soledad Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose |
author_role |
author |
author2 |
Centres, Paulo Marcelo Ramirez Pastor, Antonio Jose |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Jamming Percolation Phase transition Monte Carlo |
topic |
Jamming Percolation Phase transition Monte Carlo |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Numerical simulations and finite-size scaling analysis have been carried out to study the problem of inverse site percolation by the removal of k×k square tiles (k2-mers) from square lattices. The process starts with an initial configuration, where all lattice sites are occupied and, obviously, the opposite sides of the lattice are connected by occupied sites. Then the system is diluted by removing k2-mers of occupied sites from the lattice following a random sequential adsorption mechanism. The process finishes when the jamming state is reached and no more objects can be removed due to the absence of occupied sites clusters of appropriate size and shape. The central idea of this paper is based on finding the maximum concentration of occupied sites, pc,k, for which the connectivity disappears. This particular value of the concentration is called the inverse percolation threshold and determines a well-defined geometrical phase transition in the system. The results obtained for pc,k show that the inverse percolation threshold is a decreasing function of k in the range 1≤k≤4. For k≥5, all jammed configurations are percolating states, and consequently, there is no nonpercolating phase. In other words, the lattice remains connected even when the highest allowed concentration of removed sites is reached. The jamming exponent νj was measured, being νj=1 regardless of the size k considered. In addition, the accurate determination of the critical exponents ν, β, and γ reveals that the percolation phase transition involved in the system, which occurs for k varying between one and four, has the same universality class as the standard percolation problem. Fil: Ramírez, Lucía Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Centres, Paulo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Ramirez Pastor, Antonio Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina |
description |
Numerical simulations and finite-size scaling analysis have been carried out to study the problem of inverse site percolation by the removal of k×k square tiles (k2-mers) from square lattices. The process starts with an initial configuration, where all lattice sites are occupied and, obviously, the opposite sides of the lattice are connected by occupied sites. Then the system is diluted by removing k2-mers of occupied sites from the lattice following a random sequential adsorption mechanism. The process finishes when the jamming state is reached and no more objects can be removed due to the absence of occupied sites clusters of appropriate size and shape. The central idea of this paper is based on finding the maximum concentration of occupied sites, pc,k, for which the connectivity disappears. This particular value of the concentration is called the inverse percolation threshold and determines a well-defined geometrical phase transition in the system. The results obtained for pc,k show that the inverse percolation threshold is a decreasing function of k in the range 1≤k≤4. For k≥5, all jammed configurations are percolating states, and consequently, there is no nonpercolating phase. In other words, the lattice remains connected even when the highest allowed concentration of removed sites is reached. The jamming exponent νj was measured, being νj=1 regardless of the size k considered. In addition, the accurate determination of the critical exponents ν, β, and γ reveals that the percolation phase transition involved in the system, which occurs for k varying between one and four, has the same universality class as the standard percolation problem. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/117000 Ramírez, Lucía Soledad; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Percolation phase transition by removal of k2 -mers from fully occupied lattices; American Physical Society; Physical Review E; 100; 3; 9-2019; 1-12; 032105 2470-0045 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/117000 |
identifier_str_mv |
Ramírez, Lucía Soledad; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Percolation phase transition by removal of k2 -mers from fully occupied lattices; American Physical Society; Physical Review E; 100; 3; 9-2019; 1-12; 032105 2470-0045 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.100.032105 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.100.032105 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614461748412416 |
score |
13.070432 |