The least subtopos containing the discrete skeleton of Ω

Autores
Menni, Matías
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let p : E → S be a pre-cohesive geometric morphism. We show that theleast subtopos of E containing both the subcategories p∗ : S → E and p! : S → E ex-ists, and that it coincides with the least subtopos containing p∗2 , where 2 denotes thesubobject classifier of S.
Fil: Menni, Matías. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Materia
Topos Theory
Axiomatic Cohesion
Aufhebung
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/278924

id CONICETDig_2a389253d12979d41932c76f20ad7419
oai_identifier_str oai:ri.conicet.gov.ar:11336/278924
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The least subtopos containing the discrete skeleton of ΩMenni, MatíasTopos TheoryAxiomatic CohesionAufhebunghttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let p : E → S be a pre-cohesive geometric morphism. We show that theleast subtopos of E containing both the subcategories p∗ : S → E and p! : S → E ex-ists, and that it coincides with the least subtopos containing p∗2 , where 2 denotes thesubobject classifier of S.Fil: Menni, Matías. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaMount Allison University2025-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/278924Menni, Matías; The least subtopos containing the discrete skeleton of Ω; Mount Allison University; Theory And Applications Of Categories; 42; 8; 8-2025; 172-1791201-561XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/42/8/42-08.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-01-14T11:42:48Zoai:ri.conicet.gov.ar:11336/278924instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-01-14 11:42:48.498CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The least subtopos containing the discrete skeleton of Ω
title The least subtopos containing the discrete skeleton of Ω
spellingShingle The least subtopos containing the discrete skeleton of Ω
Menni, Matías
Topos Theory
Axiomatic Cohesion
Aufhebung
title_short The least subtopos containing the discrete skeleton of Ω
title_full The least subtopos containing the discrete skeleton of Ω
title_fullStr The least subtopos containing the discrete skeleton of Ω
title_full_unstemmed The least subtopos containing the discrete skeleton of Ω
title_sort The least subtopos containing the discrete skeleton of Ω
dc.creator.none.fl_str_mv Menni, Matías
author Menni, Matías
author_facet Menni, Matías
author_role author
dc.subject.none.fl_str_mv Topos Theory
Axiomatic Cohesion
Aufhebung
topic Topos Theory
Axiomatic Cohesion
Aufhebung
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let p : E → S be a pre-cohesive geometric morphism. We show that theleast subtopos of E containing both the subcategories p∗ : S → E and p! : S → E ex-ists, and that it coincides with the least subtopos containing p∗2 , where 2 denotes thesubobject classifier of S.
Fil: Menni, Matías. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
description Let p : E → S be a pre-cohesive geometric morphism. We show that theleast subtopos of E containing both the subcategories p∗ : S → E and p! : S → E ex-ists, and that it coincides with the least subtopos containing p∗2 , where 2 denotes thesubobject classifier of S.
publishDate 2025
dc.date.none.fl_str_mv 2025-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/278924
Menni, Matías; The least subtopos containing the discrete skeleton of Ω; Mount Allison University; Theory And Applications Of Categories; 42; 8; 8-2025; 172-179
1201-561X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/278924
identifier_str_mv Menni, Matías; The least subtopos containing the discrete skeleton of Ω; Mount Allison University; Theory And Applications Of Categories; 42; 8; 8-2025; 172-179
1201-561X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/42/8/42-08.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Mount Allison University
publisher.none.fl_str_mv Mount Allison University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1854320753549246464
score 13.113929