Empirical Mode Decomposition for adaptive AM-FM analysis of Speech: A Review
- Autores
- Sharma, Rajib; Vignolo, Leandro Daniel; Schlotthauer, Gaston; Colominas, Marcelo Alejandro; Rufiner, Hugo Leonardo; Prasanna, S. R. M.
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work reviews the advancements in the non-conventional analysis of speech signals, particularly from an AM-FM analysis point of view. The benefits of such an analysis, as opposed to the traditional shorttime analysis of speech, is illustrated in this work. The inherent non-linearity of the speech productionsystem is discussed. The limitations of Fourier analysis, Linear Prediction (LP) analysis, and the Mel Filterbank Cepstral Coefficients (MFCCs), are presented, thus providing the motivation for the AM-FM representation of speech. The principle and methodology of traditional AM-FM analysis is discussed, as amethod of capturing the non-linear dynamics of the speech signal. The technique of Empirical Mode Decomposition (EMD) is then introduced as a means of performing adaptive AM-FM analysis of speech, alleviating the limitations of the fixed analysis provided by the traditional AM-FM methodology. The merits and demerits of EMD with respect to traditional AM-FM analysis is discussed. The developments of EMD to counter its demerits are presented. Selected applications of EMD in speech processing are briefly reviewed. The paper concludes by pointing out some aspects of speech processing where EMD might be explored.
Fil: Sharma, Rajib. Indian Institute Of Technology Guwahati; India
Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Colominas, Marcelo Alejandro. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Prasanna, S. R. M.. Indian Institute Of Technology Guwahati; India - Materia
-
Emd
Am-Fm
Wavelet
Lp
Mfcc
Speech Processing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/47574
Ver los metadatos del registro completo
id |
CONICETDig_55c448fd4cefef916cd86bba5a337281 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/47574 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Empirical Mode Decomposition for adaptive AM-FM analysis of Speech: A ReviewSharma, RajibVignolo, Leandro DanielSchlotthauer, GastonColominas, Marcelo AlejandroRufiner, Hugo LeonardoPrasanna, S. R. M.EmdAm-FmWaveletLpMfccSpeech Processinghttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This work reviews the advancements in the non-conventional analysis of speech signals, particularly from an AM-FM analysis point of view. The benefits of such an analysis, as opposed to the traditional shorttime analysis of speech, is illustrated in this work. The inherent non-linearity of the speech productionsystem is discussed. The limitations of Fourier analysis, Linear Prediction (LP) analysis, and the Mel Filterbank Cepstral Coefficients (MFCCs), are presented, thus providing the motivation for the AM-FM representation of speech. The principle and methodology of traditional AM-FM analysis is discussed, as amethod of capturing the non-linear dynamics of the speech signal. The technique of Empirical Mode Decomposition (EMD) is then introduced as a means of performing adaptive AM-FM analysis of speech, alleviating the limitations of the fixed analysis provided by the traditional AM-FM methodology. The merits and demerits of EMD with respect to traditional AM-FM analysis is discussed. The developments of EMD to counter its demerits are presented. Selected applications of EMD in speech processing are briefly reviewed. The paper concludes by pointing out some aspects of speech processing where EMD might be explored.Fil: Sharma, Rajib. Indian Institute Of Technology Guwahati; IndiaFil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Colominas, Marcelo Alejandro. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Prasanna, S. R. M.. Indian Institute Of Technology Guwahati; IndiaElsevier Science2017-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/47574Sharma, Rajib; Vignolo, Leandro Daniel; Schlotthauer, Gaston; Colominas, Marcelo Alejandro; Rufiner, Hugo Leonardo; et al.; Empirical Mode Decomposition for adaptive AM-FM analysis of Speech: A Review; Elsevier Science; Speech Communication; 88; 4-2017; 39-640167-6393CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167639316302370info:eu-repo/semantics/altIdentifier/doi/10.1016/j.specom.2016.12.004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:53Zoai:ri.conicet.gov.ar:11336/47574instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:54.266CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Empirical Mode Decomposition for adaptive AM-FM analysis of Speech: A Review |
title |
Empirical Mode Decomposition for adaptive AM-FM analysis of Speech: A Review |
spellingShingle |
Empirical Mode Decomposition for adaptive AM-FM analysis of Speech: A Review Sharma, Rajib Emd Am-Fm Wavelet Lp Mfcc Speech Processing |
title_short |
Empirical Mode Decomposition for adaptive AM-FM analysis of Speech: A Review |
title_full |
Empirical Mode Decomposition for adaptive AM-FM analysis of Speech: A Review |
title_fullStr |
Empirical Mode Decomposition for adaptive AM-FM analysis of Speech: A Review |
title_full_unstemmed |
Empirical Mode Decomposition for adaptive AM-FM analysis of Speech: A Review |
title_sort |
Empirical Mode Decomposition for adaptive AM-FM analysis of Speech: A Review |
dc.creator.none.fl_str_mv |
Sharma, Rajib Vignolo, Leandro Daniel Schlotthauer, Gaston Colominas, Marcelo Alejandro Rufiner, Hugo Leonardo Prasanna, S. R. M. |
author |
Sharma, Rajib |
author_facet |
Sharma, Rajib Vignolo, Leandro Daniel Schlotthauer, Gaston Colominas, Marcelo Alejandro Rufiner, Hugo Leonardo Prasanna, S. R. M. |
author_role |
author |
author2 |
Vignolo, Leandro Daniel Schlotthauer, Gaston Colominas, Marcelo Alejandro Rufiner, Hugo Leonardo Prasanna, S. R. M. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Emd Am-Fm Wavelet Lp Mfcc Speech Processing |
topic |
Emd Am-Fm Wavelet Lp Mfcc Speech Processing |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This work reviews the advancements in the non-conventional analysis of speech signals, particularly from an AM-FM analysis point of view. The benefits of such an analysis, as opposed to the traditional shorttime analysis of speech, is illustrated in this work. The inherent non-linearity of the speech productionsystem is discussed. The limitations of Fourier analysis, Linear Prediction (LP) analysis, and the Mel Filterbank Cepstral Coefficients (MFCCs), are presented, thus providing the motivation for the AM-FM representation of speech. The principle and methodology of traditional AM-FM analysis is discussed, as amethod of capturing the non-linear dynamics of the speech signal. The technique of Empirical Mode Decomposition (EMD) is then introduced as a means of performing adaptive AM-FM analysis of speech, alleviating the limitations of the fixed analysis provided by the traditional AM-FM methodology. The merits and demerits of EMD with respect to traditional AM-FM analysis is discussed. The developments of EMD to counter its demerits are presented. Selected applications of EMD in speech processing are briefly reviewed. The paper concludes by pointing out some aspects of speech processing where EMD might be explored. Fil: Sharma, Rajib. Indian Institute Of Technology Guwahati; India Fil: Vignolo, Leandro Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina Fil: Colominas, Marcelo Alejandro. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Prasanna, S. R. M.. Indian Institute Of Technology Guwahati; India |
description |
This work reviews the advancements in the non-conventional analysis of speech signals, particularly from an AM-FM analysis point of view. The benefits of such an analysis, as opposed to the traditional shorttime analysis of speech, is illustrated in this work. The inherent non-linearity of the speech productionsystem is discussed. The limitations of Fourier analysis, Linear Prediction (LP) analysis, and the Mel Filterbank Cepstral Coefficients (MFCCs), are presented, thus providing the motivation for the AM-FM representation of speech. The principle and methodology of traditional AM-FM analysis is discussed, as amethod of capturing the non-linear dynamics of the speech signal. The technique of Empirical Mode Decomposition (EMD) is then introduced as a means of performing adaptive AM-FM analysis of speech, alleviating the limitations of the fixed analysis provided by the traditional AM-FM methodology. The merits and demerits of EMD with respect to traditional AM-FM analysis is discussed. The developments of EMD to counter its demerits are presented. Selected applications of EMD in speech processing are briefly reviewed. The paper concludes by pointing out some aspects of speech processing where EMD might be explored. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/47574 Sharma, Rajib; Vignolo, Leandro Daniel; Schlotthauer, Gaston; Colominas, Marcelo Alejandro; Rufiner, Hugo Leonardo; et al.; Empirical Mode Decomposition for adaptive AM-FM analysis of Speech: A Review; Elsevier Science; Speech Communication; 88; 4-2017; 39-64 0167-6393 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/47574 |
identifier_str_mv |
Sharma, Rajib; Vignolo, Leandro Daniel; Schlotthauer, Gaston; Colominas, Marcelo Alejandro; Rufiner, Hugo Leonardo; et al.; Empirical Mode Decomposition for adaptive AM-FM analysis of Speech: A Review; Elsevier Science; Speech Communication; 88; 4-2017; 39-64 0167-6393 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167639316302370 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.specom.2016.12.004 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613160113274880 |
score |
13.070432 |