Features extraction method for brain-machine communication based on the empirical mode decomposition
- Autores
- Diez, Pablo Federico; Mut, Vicente Antonio; Laciar Leber, Eric; Torres, Abel; Avila Perona, Enrique Mario
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A brain-machine interface (BMI) is a communication system that translates human brain activity into commands, and then these commands are conveyed to a machine or a computer. It is proposes a technique for features extraction from electroencephalographic (EEG) signals and afterward, their classification on different mental tasks. The empirical mode decomposition (EMD) is a method capable of processing non-stationary and nonlinear signals, as the EEG. The EMD was applied on EEG signals of seven subjects performing five mental tasks. Six features were computed, namely, root mean square (RMS), variance, Shannon entropy, Lempel-Ziv complexity value, and central and maximum frequencies. In order to reduce the dimensionality of the feature vector, the Wilks´ lambda (WL) parameter was used for the selection of the most important variables. The classification of mental tasks was performed using linear discriminant analysis (LDA) and neural networks (NN). Using this method, the average classification over all subjects in database is 91 ± 5% and 87 ± 5% using LDA and NN, respectively. Bit rate was ranging from 0.24 bits/trial up to 0.84 bits/trial. The proposed method allows achieving higher performances in the classification of mental tasks than other traditional methods using the same database. This represents an improvement in the brain-machine communication system.
Fil: Diez, Pablo Federico. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mut, Vicente Antonio. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Torres, Abel. Universidad Politécnica de Catalunya. Departamento de Ing.de Sistemas, Automat.e Inf.industrial; España
Fil: Avila Perona, Enrique Mario. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina - Materia
-
Brain-Machine Interface (Bmi)
Brain-Computer Interface (Bci)
Empirical Mode Decomposition (Emd)
Feature Extraction - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/26707
Ver los metadatos del registro completo
id |
CONICETDig_341c55856596b23866dd2cdee57276ce |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/26707 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Features extraction method for brain-machine communication based on the empirical mode decompositionDiez, Pablo FedericoMut, Vicente AntonioLaciar Leber, EricTorres, AbelAvila Perona, Enrique MarioBrain-Machine Interface (Bmi)Brain-Computer Interface (Bci)Empirical Mode Decomposition (Emd)Feature ExtractionA brain-machine interface (BMI) is a communication system that translates human brain activity into commands, and then these commands are conveyed to a machine or a computer. It is proposes a technique for features extraction from electroencephalographic (EEG) signals and afterward, their classification on different mental tasks. The empirical mode decomposition (EMD) is a method capable of processing non-stationary and nonlinear signals, as the EEG. The EMD was applied on EEG signals of seven subjects performing five mental tasks. Six features were computed, namely, root mean square (RMS), variance, Shannon entropy, Lempel-Ziv complexity value, and central and maximum frequencies. In order to reduce the dimensionality of the feature vector, the Wilks´ lambda (WL) parameter was used for the selection of the most important variables. The classification of mental tasks was performed using linear discriminant analysis (LDA) and neural networks (NN). Using this method, the average classification over all subjects in database is 91 ± 5% and 87 ± 5% using LDA and NN, respectively. Bit rate was ranging from 0.24 bits/trial up to 0.84 bits/trial. The proposed method allows achieving higher performances in the classification of mental tasks than other traditional methods using the same database. This represents an improvement in the brain-machine communication system.Fil: Diez, Pablo Federico. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mut, Vicente Antonio. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Torres, Abel. Universidad Politécnica de Catalunya. Departamento de Ing.de Sistemas, Automat.e Inf.industrial; EspañaFil: Avila Perona, Enrique Mario. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaWorld Scientific2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26707Diez, Pablo Federico; Mut, Vicente Antonio; Laciar Leber, Eric; Torres, Abel; Avila Perona, Enrique Mario; Features extraction method for brain-machine communication based on the empirical mode decomposition; World Scientific; Biomedical Engineering-applications Basis Communications; 25; 6; 7-2013; 1-131016-23721793-7132CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.4015/S1016237213500580info:eu-repo/semantics/altIdentifier/doi/10.1142/S1016237213500580info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:26:44Zoai:ri.conicet.gov.ar:11336/26707instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:26:44.284CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Features extraction method for brain-machine communication based on the empirical mode decomposition |
title |
Features extraction method for brain-machine communication based on the empirical mode decomposition |
spellingShingle |
Features extraction method for brain-machine communication based on the empirical mode decomposition Diez, Pablo Federico Brain-Machine Interface (Bmi) Brain-Computer Interface (Bci) Empirical Mode Decomposition (Emd) Feature Extraction |
title_short |
Features extraction method for brain-machine communication based on the empirical mode decomposition |
title_full |
Features extraction method for brain-machine communication based on the empirical mode decomposition |
title_fullStr |
Features extraction method for brain-machine communication based on the empirical mode decomposition |
title_full_unstemmed |
Features extraction method for brain-machine communication based on the empirical mode decomposition |
title_sort |
Features extraction method for brain-machine communication based on the empirical mode decomposition |
dc.creator.none.fl_str_mv |
Diez, Pablo Federico Mut, Vicente Antonio Laciar Leber, Eric Torres, Abel Avila Perona, Enrique Mario |
author |
Diez, Pablo Federico |
author_facet |
Diez, Pablo Federico Mut, Vicente Antonio Laciar Leber, Eric Torres, Abel Avila Perona, Enrique Mario |
author_role |
author |
author2 |
Mut, Vicente Antonio Laciar Leber, Eric Torres, Abel Avila Perona, Enrique Mario |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Brain-Machine Interface (Bmi) Brain-Computer Interface (Bci) Empirical Mode Decomposition (Emd) Feature Extraction |
topic |
Brain-Machine Interface (Bmi) Brain-Computer Interface (Bci) Empirical Mode Decomposition (Emd) Feature Extraction |
dc.description.none.fl_txt_mv |
A brain-machine interface (BMI) is a communication system that translates human brain activity into commands, and then these commands are conveyed to a machine or a computer. It is proposes a technique for features extraction from electroencephalographic (EEG) signals and afterward, their classification on different mental tasks. The empirical mode decomposition (EMD) is a method capable of processing non-stationary and nonlinear signals, as the EEG. The EMD was applied on EEG signals of seven subjects performing five mental tasks. Six features were computed, namely, root mean square (RMS), variance, Shannon entropy, Lempel-Ziv complexity value, and central and maximum frequencies. In order to reduce the dimensionality of the feature vector, the Wilks´ lambda (WL) parameter was used for the selection of the most important variables. The classification of mental tasks was performed using linear discriminant analysis (LDA) and neural networks (NN). Using this method, the average classification over all subjects in database is 91 ± 5% and 87 ± 5% using LDA and NN, respectively. Bit rate was ranging from 0.24 bits/trial up to 0.84 bits/trial. The proposed method allows achieving higher performances in the classification of mental tasks than other traditional methods using the same database. This represents an improvement in the brain-machine communication system. Fil: Diez, Pablo Federico. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Mut, Vicente Antonio. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Torres, Abel. Universidad Politécnica de Catalunya. Departamento de Ing.de Sistemas, Automat.e Inf.industrial; España Fil: Avila Perona, Enrique Mario. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina |
description |
A brain-machine interface (BMI) is a communication system that translates human brain activity into commands, and then these commands are conveyed to a machine or a computer. It is proposes a technique for features extraction from electroencephalographic (EEG) signals and afterward, their classification on different mental tasks. The empirical mode decomposition (EMD) is a method capable of processing non-stationary and nonlinear signals, as the EEG. The EMD was applied on EEG signals of seven subjects performing five mental tasks. Six features were computed, namely, root mean square (RMS), variance, Shannon entropy, Lempel-Ziv complexity value, and central and maximum frequencies. In order to reduce the dimensionality of the feature vector, the Wilks´ lambda (WL) parameter was used for the selection of the most important variables. The classification of mental tasks was performed using linear discriminant analysis (LDA) and neural networks (NN). Using this method, the average classification over all subjects in database is 91 ± 5% and 87 ± 5% using LDA and NN, respectively. Bit rate was ranging from 0.24 bits/trial up to 0.84 bits/trial. The proposed method allows achieving higher performances in the classification of mental tasks than other traditional methods using the same database. This represents an improvement in the brain-machine communication system. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/26707 Diez, Pablo Federico; Mut, Vicente Antonio; Laciar Leber, Eric; Torres, Abel; Avila Perona, Enrique Mario; Features extraction method for brain-machine communication based on the empirical mode decomposition; World Scientific; Biomedical Engineering-applications Basis Communications; 25; 6; 7-2013; 1-13 1016-2372 1793-7132 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/26707 |
identifier_str_mv |
Diez, Pablo Federico; Mut, Vicente Antonio; Laciar Leber, Eric; Torres, Abel; Avila Perona, Enrique Mario; Features extraction method for brain-machine communication based on the empirical mode decomposition; World Scientific; Biomedical Engineering-applications Basis Communications; 25; 6; 7-2013; 1-13 1016-2372 1793-7132 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.4015/S1016237213500580 info:eu-repo/semantics/altIdentifier/doi/10.1142/S1016237213500580 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082715446673408 |
score |
13.221938 |