Features extraction method for brain-machine communication based on the empirical mode decomposition

Autores
Diez, Pablo Federico; Mut, Vicente Antonio; Laciar Leber, Eric; Torres, Abel; Avila Perona, Enrique Mario
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A brain-machine interface (BMI) is a communication system that translates human brain activity into commands, and then these commands are conveyed to a machine or a computer. It is proposes a technique for features extraction from electroencephalographic (EEG) signals and afterward, their classification on different mental tasks. The empirical mode decomposition (EMD) is a method capable of processing non-stationary and nonlinear signals, as the EEG. The EMD was applied on EEG signals of seven subjects performing five mental tasks. Six features were computed, namely, root mean square (RMS), variance, Shannon entropy, Lempel-Ziv complexity value, and central and maximum frequencies. In order to reduce the dimensionality of the feature vector, the Wilks´ lambda (WL) parameter was used for the selection of the most important variables. The classification of mental tasks was performed using linear discriminant analysis (LDA) and neural networks (NN). Using this method, the average classification over all subjects in database is 91 ± 5% and 87 ± 5% using LDA and NN, respectively. Bit rate was ranging from 0.24 bits/trial up to 0.84 bits/trial. The proposed method allows achieving higher performances in the classification of mental tasks than other traditional methods using the same database. This represents an improvement in the brain-machine communication system.
Fil: Diez, Pablo Federico. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mut, Vicente Antonio. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Torres, Abel. Universidad Politécnica de Catalunya. Departamento de Ing.de Sistemas, Automat.e Inf.industrial; España
Fil: Avila Perona, Enrique Mario. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Materia
Brain-Machine Interface (Bmi)
Brain-Computer Interface (Bci)
Empirical Mode Decomposition (Emd)
Feature Extraction
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/26707

id CONICETDig_341c55856596b23866dd2cdee57276ce
oai_identifier_str oai:ri.conicet.gov.ar:11336/26707
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Features extraction method for brain-machine communication based on the empirical mode decompositionDiez, Pablo FedericoMut, Vicente AntonioLaciar Leber, EricTorres, AbelAvila Perona, Enrique MarioBrain-Machine Interface (Bmi)Brain-Computer Interface (Bci)Empirical Mode Decomposition (Emd)Feature ExtractionA brain-machine interface (BMI) is a communication system that translates human brain activity into commands, and then these commands are conveyed to a machine or a computer. It is proposes a technique for features extraction from electroencephalographic (EEG) signals and afterward, their classification on different mental tasks. The empirical mode decomposition (EMD) is a method capable of processing non-stationary and nonlinear signals, as the EEG. The EMD was applied on EEG signals of seven subjects performing five mental tasks. Six features were computed, namely, root mean square (RMS), variance, Shannon entropy, Lempel-Ziv complexity value, and central and maximum frequencies. In order to reduce the dimensionality of the feature vector, the Wilks´ lambda (WL) parameter was used for the selection of the most important variables. The classification of mental tasks was performed using linear discriminant analysis (LDA) and neural networks (NN). Using this method, the average classification over all subjects in database is 91 ± 5% and 87 ± 5% using LDA and NN, respectively. Bit rate was ranging from 0.24 bits/trial up to 0.84 bits/trial. The proposed method allows achieving higher performances in the classification of mental tasks than other traditional methods using the same database. This represents an improvement in the brain-machine communication system.Fil: Diez, Pablo Federico. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mut, Vicente Antonio. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Torres, Abel. Universidad Politécnica de Catalunya. Departamento de Ing.de Sistemas, Automat.e Inf.industrial; EspañaFil: Avila Perona, Enrique Mario. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaWorld Scientific2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26707Diez, Pablo Federico; Mut, Vicente Antonio; Laciar Leber, Eric; Torres, Abel; Avila Perona, Enrique Mario; Features extraction method for brain-machine communication based on the empirical mode decomposition; World Scientific; Biomedical Engineering-applications Basis Communications; 25; 6; 7-2013; 1-131016-23721793-7132CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.4015/S1016237213500580info:eu-repo/semantics/altIdentifier/doi/10.1142/S1016237213500580info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:26:44Zoai:ri.conicet.gov.ar:11336/26707instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:26:44.284CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Features extraction method for brain-machine communication based on the empirical mode decomposition
title Features extraction method for brain-machine communication based on the empirical mode decomposition
spellingShingle Features extraction method for brain-machine communication based on the empirical mode decomposition
Diez, Pablo Federico
Brain-Machine Interface (Bmi)
Brain-Computer Interface (Bci)
Empirical Mode Decomposition (Emd)
Feature Extraction
title_short Features extraction method for brain-machine communication based on the empirical mode decomposition
title_full Features extraction method for brain-machine communication based on the empirical mode decomposition
title_fullStr Features extraction method for brain-machine communication based on the empirical mode decomposition
title_full_unstemmed Features extraction method for brain-machine communication based on the empirical mode decomposition
title_sort Features extraction method for brain-machine communication based on the empirical mode decomposition
dc.creator.none.fl_str_mv Diez, Pablo Federico
Mut, Vicente Antonio
Laciar Leber, Eric
Torres, Abel
Avila Perona, Enrique Mario
author Diez, Pablo Federico
author_facet Diez, Pablo Federico
Mut, Vicente Antonio
Laciar Leber, Eric
Torres, Abel
Avila Perona, Enrique Mario
author_role author
author2 Mut, Vicente Antonio
Laciar Leber, Eric
Torres, Abel
Avila Perona, Enrique Mario
author2_role author
author
author
author
dc.subject.none.fl_str_mv Brain-Machine Interface (Bmi)
Brain-Computer Interface (Bci)
Empirical Mode Decomposition (Emd)
Feature Extraction
topic Brain-Machine Interface (Bmi)
Brain-Computer Interface (Bci)
Empirical Mode Decomposition (Emd)
Feature Extraction
dc.description.none.fl_txt_mv A brain-machine interface (BMI) is a communication system that translates human brain activity into commands, and then these commands are conveyed to a machine or a computer. It is proposes a technique for features extraction from electroencephalographic (EEG) signals and afterward, their classification on different mental tasks. The empirical mode decomposition (EMD) is a method capable of processing non-stationary and nonlinear signals, as the EEG. The EMD was applied on EEG signals of seven subjects performing five mental tasks. Six features were computed, namely, root mean square (RMS), variance, Shannon entropy, Lempel-Ziv complexity value, and central and maximum frequencies. In order to reduce the dimensionality of the feature vector, the Wilks´ lambda (WL) parameter was used for the selection of the most important variables. The classification of mental tasks was performed using linear discriminant analysis (LDA) and neural networks (NN). Using this method, the average classification over all subjects in database is 91 ± 5% and 87 ± 5% using LDA and NN, respectively. Bit rate was ranging from 0.24 bits/trial up to 0.84 bits/trial. The proposed method allows achieving higher performances in the classification of mental tasks than other traditional methods using the same database. This represents an improvement in the brain-machine communication system.
Fil: Diez, Pablo Federico. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mut, Vicente Antonio. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Torres, Abel. Universidad Politécnica de Catalunya. Departamento de Ing.de Sistemas, Automat.e Inf.industrial; España
Fil: Avila Perona, Enrique Mario. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
description A brain-machine interface (BMI) is a communication system that translates human brain activity into commands, and then these commands are conveyed to a machine or a computer. It is proposes a technique for features extraction from electroencephalographic (EEG) signals and afterward, their classification on different mental tasks. The empirical mode decomposition (EMD) is a method capable of processing non-stationary and nonlinear signals, as the EEG. The EMD was applied on EEG signals of seven subjects performing five mental tasks. Six features were computed, namely, root mean square (RMS), variance, Shannon entropy, Lempel-Ziv complexity value, and central and maximum frequencies. In order to reduce the dimensionality of the feature vector, the Wilks´ lambda (WL) parameter was used for the selection of the most important variables. The classification of mental tasks was performed using linear discriminant analysis (LDA) and neural networks (NN). Using this method, the average classification over all subjects in database is 91 ± 5% and 87 ± 5% using LDA and NN, respectively. Bit rate was ranging from 0.24 bits/trial up to 0.84 bits/trial. The proposed method allows achieving higher performances in the classification of mental tasks than other traditional methods using the same database. This represents an improvement in the brain-machine communication system.
publishDate 2013
dc.date.none.fl_str_mv 2013-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/26707
Diez, Pablo Federico; Mut, Vicente Antonio; Laciar Leber, Eric; Torres, Abel; Avila Perona, Enrique Mario; Features extraction method for brain-machine communication based on the empirical mode decomposition; World Scientific; Biomedical Engineering-applications Basis Communications; 25; 6; 7-2013; 1-13
1016-2372
1793-7132
CONICET Digital
CONICET
url http://hdl.handle.net/11336/26707
identifier_str_mv Diez, Pablo Federico; Mut, Vicente Antonio; Laciar Leber, Eric; Torres, Abel; Avila Perona, Enrique Mario; Features extraction method for brain-machine communication based on the empirical mode decomposition; World Scientific; Biomedical Engineering-applications Basis Communications; 25; 6; 7-2013; 1-13
1016-2372
1793-7132
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.4015/S1016237213500580
info:eu-repo/semantics/altIdentifier/doi/10.1142/S1016237213500580
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082715446673408
score 13.221938