An unconstrained optimization approach to empirical mode decomposition
- Autores
- Colominas, Marcelo Alejandro; Schlotthauer, Gaston; Torres, Maria Eugenia
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Empirical mode decomposition (EMD) is an adaptive (data-driven) method to decompose non-linear and non-stationary signals into AM-FM components. Despite its well-known usefulness, one of the major EMD drawbacks is its lack of mathematical foundation, being defined as an algorithm output. In this paper we present an alternative formulation for the EMD method, based on unconstrained optimization. Unlike previous optimization-based efforts, our approach is simple, with an analytic solution, and its algorithm can be easily implemented. By making no explicit use of envelopes to find the local mean, possible inherent problems of the original EMD formulation (such as the under- and overshoot) are avoided. Classical EMD experiments with artificial signals overlapped in both time and frequency are revisited, and comparisons with other optimization-based approaches to EMD are made, showing advantages for our proposal both in recovering known components and computational times. A voice signal is decomposed by our method evidencing some advantages in comparison with traditional EMD and noise-assisted versions. The new method here introduced catches most flavors of the original EMD but with a more solid mathematical framework, which could lead to explore analytical properties of this technique.
Fil: Colominas, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Entre Ríos. Universidad Nacional de Entre Ríos. Centro de Investigaciones y Transferencia de Entre Ríos; Argentina
Fil: Torres, Maria Eugenia. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Empirical Mode Decomposition (Emd)
Convex Optimization
Time Frequency
Data-Driven Methods - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/41591
Ver los metadatos del registro completo
id |
CONICETDig_58b8d2c7821b5ee3aa5130ce3c6638e2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/41591 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An unconstrained optimization approach to empirical mode decompositionColominas, Marcelo AlejandroSchlotthauer, GastonTorres, Maria EugeniaEmpirical Mode Decomposition (Emd)Convex OptimizationTime FrequencyData-Driven Methodshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Empirical mode decomposition (EMD) is an adaptive (data-driven) method to decompose non-linear and non-stationary signals into AM-FM components. Despite its well-known usefulness, one of the major EMD drawbacks is its lack of mathematical foundation, being defined as an algorithm output. In this paper we present an alternative formulation for the EMD method, based on unconstrained optimization. Unlike previous optimization-based efforts, our approach is simple, with an analytic solution, and its algorithm can be easily implemented. By making no explicit use of envelopes to find the local mean, possible inherent problems of the original EMD formulation (such as the under- and overshoot) are avoided. Classical EMD experiments with artificial signals overlapped in both time and frequency are revisited, and comparisons with other optimization-based approaches to EMD are made, showing advantages for our proposal both in recovering known components and computational times. A voice signal is decomposed by our method evidencing some advantages in comparison with traditional EMD and noise-assisted versions. The new method here introduced catches most flavors of the original EMD but with a more solid mathematical framework, which could lead to explore analytical properties of this technique.Fil: Colominas, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; ArgentinaFil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Entre Ríos. Universidad Nacional de Entre Ríos. Centro de Investigaciones y Transferencia de Entre Ríos; ArgentinaFil: Torres, Maria Eugenia. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAcademic Press Inc Elsevier Science2015-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/41591Colominas, Marcelo Alejandro; Schlotthauer, Gaston; Torres, Maria Eugenia; An unconstrained optimization approach to empirical mode decomposition; Academic Press Inc Elsevier Science; Digital Signal Processing; 40; 5-2015; 164-1751051-2004CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dsp.2015.02.013info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1051200415000706info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:13:05Zoai:ri.conicet.gov.ar:11336/41591instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:13:05.959CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An unconstrained optimization approach to empirical mode decomposition |
title |
An unconstrained optimization approach to empirical mode decomposition |
spellingShingle |
An unconstrained optimization approach to empirical mode decomposition Colominas, Marcelo Alejandro Empirical Mode Decomposition (Emd) Convex Optimization Time Frequency Data-Driven Methods |
title_short |
An unconstrained optimization approach to empirical mode decomposition |
title_full |
An unconstrained optimization approach to empirical mode decomposition |
title_fullStr |
An unconstrained optimization approach to empirical mode decomposition |
title_full_unstemmed |
An unconstrained optimization approach to empirical mode decomposition |
title_sort |
An unconstrained optimization approach to empirical mode decomposition |
dc.creator.none.fl_str_mv |
Colominas, Marcelo Alejandro Schlotthauer, Gaston Torres, Maria Eugenia |
author |
Colominas, Marcelo Alejandro |
author_facet |
Colominas, Marcelo Alejandro Schlotthauer, Gaston Torres, Maria Eugenia |
author_role |
author |
author2 |
Schlotthauer, Gaston Torres, Maria Eugenia |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Empirical Mode Decomposition (Emd) Convex Optimization Time Frequency Data-Driven Methods |
topic |
Empirical Mode Decomposition (Emd) Convex Optimization Time Frequency Data-Driven Methods |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Empirical mode decomposition (EMD) is an adaptive (data-driven) method to decompose non-linear and non-stationary signals into AM-FM components. Despite its well-known usefulness, one of the major EMD drawbacks is its lack of mathematical foundation, being defined as an algorithm output. In this paper we present an alternative formulation for the EMD method, based on unconstrained optimization. Unlike previous optimization-based efforts, our approach is simple, with an analytic solution, and its algorithm can be easily implemented. By making no explicit use of envelopes to find the local mean, possible inherent problems of the original EMD formulation (such as the under- and overshoot) are avoided. Classical EMD experiments with artificial signals overlapped in both time and frequency are revisited, and comparisons with other optimization-based approaches to EMD are made, showing advantages for our proposal both in recovering known components and computational times. A voice signal is decomposed by our method evidencing some advantages in comparison with traditional EMD and noise-assisted versions. The new method here introduced catches most flavors of the original EMD but with a more solid mathematical framework, which could lead to explore analytical properties of this technique. Fil: Colominas, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Entre Ríos. Universidad Nacional de Entre Ríos. Centro de Investigaciones y Transferencia de Entre Ríos; Argentina Fil: Torres, Maria Eugenia. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Empirical mode decomposition (EMD) is an adaptive (data-driven) method to decompose non-linear and non-stationary signals into AM-FM components. Despite its well-known usefulness, one of the major EMD drawbacks is its lack of mathematical foundation, being defined as an algorithm output. In this paper we present an alternative formulation for the EMD method, based on unconstrained optimization. Unlike previous optimization-based efforts, our approach is simple, with an analytic solution, and its algorithm can be easily implemented. By making no explicit use of envelopes to find the local mean, possible inherent problems of the original EMD formulation (such as the under- and overshoot) are avoided. Classical EMD experiments with artificial signals overlapped in both time and frequency are revisited, and comparisons with other optimization-based approaches to EMD are made, showing advantages for our proposal both in recovering known components and computational times. A voice signal is decomposed by our method evidencing some advantages in comparison with traditional EMD and noise-assisted versions. The new method here introduced catches most flavors of the original EMD but with a more solid mathematical framework, which could lead to explore analytical properties of this technique. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/41591 Colominas, Marcelo Alejandro; Schlotthauer, Gaston; Torres, Maria Eugenia; An unconstrained optimization approach to empirical mode decomposition; Academic Press Inc Elsevier Science; Digital Signal Processing; 40; 5-2015; 164-175 1051-2004 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/41591 |
identifier_str_mv |
Colominas, Marcelo Alejandro; Schlotthauer, Gaston; Torres, Maria Eugenia; An unconstrained optimization approach to empirical mode decomposition; Academic Press Inc Elsevier Science; Digital Signal Processing; 40; 5-2015; 164-175 1051-2004 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dsp.2015.02.013 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1051200415000706 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980688262856704 |
score |
13.004268 |