Estimates of MM type for the multivariate linear model
- Autores
- Kudraszow, Nadia Laura; Maronna, Ricardo A.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We propose a class of robust estimates for multivariate linear models. Based on the approach of MM-estimation (Yohai 1987, [24]), we estimate the regression coefficients and the covariance matrix of the errors simultaneously. These estimates have both a high breakdown point and high asymptotic efficiency under Gaussian errors. We prove consistency and asymptotic normality assuming errors with an elliptical distribution. We describe an iterative algorithm for the numerical calculation of these estimates. The advantages of the proposed estimates over their competitors are demonstrated through both simulated and real data.
Fil: Kudraszow, Nadia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Maronna, Ricardo A.. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional de La Plata; Argentina - Materia
-
ROBUST METHODS
MM-ESTIMATE
MULTIVARIATE LINEAR MODEL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/95041
Ver los metadatos del registro completo
id |
CONICETDig_9ea17e3b6fbe7e534215c596f18bd35b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/95041 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Estimates of MM type for the multivariate linear modelKudraszow, Nadia LauraMaronna, Ricardo A.ROBUST METHODSMM-ESTIMATEMULTIVARIATE LINEAR MODELhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We propose a class of robust estimates for multivariate linear models. Based on the approach of MM-estimation (Yohai 1987, [24]), we estimate the regression coefficients and the covariance matrix of the errors simultaneously. These estimates have both a high breakdown point and high asymptotic efficiency under Gaussian errors. We prove consistency and asymptotic normality assuming errors with an elliptical distribution. We describe an iterative algorithm for the numerical calculation of these estimates. The advantages of the proposed estimates over their competitors are demonstrated through both simulated and real data.Fil: Kudraszow, Nadia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Maronna, Ricardo A.. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional de La Plata; ArgentinaElsevier Inc2011-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95041Kudraszow, Nadia Laura; Maronna, Ricardo A.; Estimates of MM type for the multivariate linear model; Elsevier Inc; Journal Of Multivariate Analysis; 102; 9; 10-2011; 1280-12920047-259XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmva.2011.04.011info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0047259X11000674info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:21:50Zoai:ri.conicet.gov.ar:11336/95041instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:21:50.714CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Estimates of MM type for the multivariate linear model |
title |
Estimates of MM type for the multivariate linear model |
spellingShingle |
Estimates of MM type for the multivariate linear model Kudraszow, Nadia Laura ROBUST METHODS MM-ESTIMATE MULTIVARIATE LINEAR MODEL |
title_short |
Estimates of MM type for the multivariate linear model |
title_full |
Estimates of MM type for the multivariate linear model |
title_fullStr |
Estimates of MM type for the multivariate linear model |
title_full_unstemmed |
Estimates of MM type for the multivariate linear model |
title_sort |
Estimates of MM type for the multivariate linear model |
dc.creator.none.fl_str_mv |
Kudraszow, Nadia Laura Maronna, Ricardo A. |
author |
Kudraszow, Nadia Laura |
author_facet |
Kudraszow, Nadia Laura Maronna, Ricardo A. |
author_role |
author |
author2 |
Maronna, Ricardo A. |
author2_role |
author |
dc.subject.none.fl_str_mv |
ROBUST METHODS MM-ESTIMATE MULTIVARIATE LINEAR MODEL |
topic |
ROBUST METHODS MM-ESTIMATE MULTIVARIATE LINEAR MODEL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We propose a class of robust estimates for multivariate linear models. Based on the approach of MM-estimation (Yohai 1987, [24]), we estimate the regression coefficients and the covariance matrix of the errors simultaneously. These estimates have both a high breakdown point and high asymptotic efficiency under Gaussian errors. We prove consistency and asymptotic normality assuming errors with an elliptical distribution. We describe an iterative algorithm for the numerical calculation of these estimates. The advantages of the proposed estimates over their competitors are demonstrated through both simulated and real data. Fil: Kudraszow, Nadia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina Fil: Maronna, Ricardo A.. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional de La Plata; Argentina |
description |
We propose a class of robust estimates for multivariate linear models. Based on the approach of MM-estimation (Yohai 1987, [24]), we estimate the regression coefficients and the covariance matrix of the errors simultaneously. These estimates have both a high breakdown point and high asymptotic efficiency under Gaussian errors. We prove consistency and asymptotic normality assuming errors with an elliptical distribution. We describe an iterative algorithm for the numerical calculation of these estimates. The advantages of the proposed estimates over their competitors are demonstrated through both simulated and real data. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/95041 Kudraszow, Nadia Laura; Maronna, Ricardo A.; Estimates of MM type for the multivariate linear model; Elsevier Inc; Journal Of Multivariate Analysis; 102; 9; 10-2011; 1280-1292 0047-259X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/95041 |
identifier_str_mv |
Kudraszow, Nadia Laura; Maronna, Ricardo A.; Estimates of MM type for the multivariate linear model; Elsevier Inc; Journal Of Multivariate Analysis; 102; 9; 10-2011; 1280-1292 0047-259X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmva.2011.04.011 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0047259X11000674 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Inc |
publisher.none.fl_str_mv |
Elsevier Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614208371556352 |
score |
13.070432 |