Resistant estimates for high dimensional and functional data based on random projections
- Autores
- Fraiman, Jacob Ricardo; Svarc, Marcela
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We herein propose a new robust estimation method based on random projections that is adaptive and automatically produces a robust estimate, while enabling easy computations for high or infinite dimensional data. Under some restricted contamination models, the procedure is robust and attains full efficiency. We tested the method using both simulated and real data.
Fil: Fraiman, Jacob Ricardo. Universidad de San Andrés; Argentina. Universidad de la República; Uruguay. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Svarc, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina - Materia
-
Robust estimates
High dimensional data
Trimming procedures
Trimming estimates
Location and scatter estimates - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/22882
Ver los metadatos del registro completo
id |
CONICETDig_1dd2879a729a693e18ae1a22b2c77788 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/22882 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Resistant estimates for high dimensional and functional data based on random projectionsFraiman, Jacob RicardoSvarc, MarcelaRobust estimatesHigh dimensional dataTrimming proceduresTrimming estimatesLocation and scatter estimateshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We herein propose a new robust estimation method based on random projections that is adaptive and automatically produces a robust estimate, while enabling easy computations for high or infinite dimensional data. Under some restricted contamination models, the procedure is robust and attains full efficiency. We tested the method using both simulated and real data.Fil: Fraiman, Jacob Ricardo. Universidad de San Andrés; Argentina. Universidad de la República; Uruguay. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Svarc, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; ArgentinaElsevier2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/22882Fraiman, Jacob Ricardo; Svarc, Marcela; Resistant estimates for high dimensional and functional data based on random projections; Elsevier; Computational Statistics and Data Analysis; 58; 9-2012; 326-3380167-9473CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2012.09.006info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167947312003350info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:00:50Zoai:ri.conicet.gov.ar:11336/22882instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:00:50.697CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Resistant estimates for high dimensional and functional data based on random projections |
title |
Resistant estimates for high dimensional and functional data based on random projections |
spellingShingle |
Resistant estimates for high dimensional and functional data based on random projections Fraiman, Jacob Ricardo Robust estimates High dimensional data Trimming procedures Trimming estimates Location and scatter estimates |
title_short |
Resistant estimates for high dimensional and functional data based on random projections |
title_full |
Resistant estimates for high dimensional and functional data based on random projections |
title_fullStr |
Resistant estimates for high dimensional and functional data based on random projections |
title_full_unstemmed |
Resistant estimates for high dimensional and functional data based on random projections |
title_sort |
Resistant estimates for high dimensional and functional data based on random projections |
dc.creator.none.fl_str_mv |
Fraiman, Jacob Ricardo Svarc, Marcela |
author |
Fraiman, Jacob Ricardo |
author_facet |
Fraiman, Jacob Ricardo Svarc, Marcela |
author_role |
author |
author2 |
Svarc, Marcela |
author2_role |
author |
dc.subject.none.fl_str_mv |
Robust estimates High dimensional data Trimming procedures Trimming estimates Location and scatter estimates |
topic |
Robust estimates High dimensional data Trimming procedures Trimming estimates Location and scatter estimates |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We herein propose a new robust estimation method based on random projections that is adaptive and automatically produces a robust estimate, while enabling easy computations for high or infinite dimensional data. Under some restricted contamination models, the procedure is robust and attains full efficiency. We tested the method using both simulated and real data. Fil: Fraiman, Jacob Ricardo. Universidad de San Andrés; Argentina. Universidad de la República; Uruguay. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Svarc, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina |
description |
We herein propose a new robust estimation method based on random projections that is adaptive and automatically produces a robust estimate, while enabling easy computations for high or infinite dimensional data. Under some restricted contamination models, the procedure is robust and attains full efficiency. We tested the method using both simulated and real data. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/22882 Fraiman, Jacob Ricardo; Svarc, Marcela; Resistant estimates for high dimensional and functional data based on random projections; Elsevier; Computational Statistics and Data Analysis; 58; 9-2012; 326-338 0167-9473 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/22882 |
identifier_str_mv |
Fraiman, Jacob Ricardo; Svarc, Marcela; Resistant estimates for high dimensional and functional data based on random projections; Elsevier; Computational Statistics and Data Analysis; 58; 9-2012; 326-338 0167-9473 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2012.09.006 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167947312003350 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613794569912320 |
score |
13.070432 |