Asymptotic Insights for Projection, Gordon–Lewis, and Sidon Constants in Boolean Cube Function Spaces
- Autores
- Defant, A.; Galicer, Daniel Eric; Mansilla, Martin Ignacio; Masty?o, M; Muro, Luis Santiago Miguel
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The main aim of this work is to study important local Banach space constants for Boolean cube function spaces. Specifically, we focus on mathcal{B}_{mathcal{S}}^{N}, the finite-dimensional Banach space of all real-valued functions defined on the N-dimensional Boolean cube {-1, +1}^{N} that have Fourier–Walsh expansions supported on a fixed family of subsets of {1, ldots , N}. Our investigation centers on the projection, Sidon, and Gordon–Lewis constants of this function space. We combine tools from different areas to derive exact formulas and asymptotic estimates of these parameters for special types of families depending on the dimension of the Boolean cube and other complexity characteristics of the support set . Using local Banach space theory, we establish the intimate relationship among these three important constants.
Fil: Defant, A.. Carl von Ossietzky Universität; Alemania
Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Mansilla, Martin Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Masty?o, M. Adam Mickiewicz University; Polonia
Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina - Materia
-
Projection constants
Boolean functions
local theory of Banach spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/257790
Ver los metadatos del registro completo
id |
CONICETDig_5335a9f722cc3c5feefa2109529c8232 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/257790 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Asymptotic Insights for Projection, Gordon–Lewis, and Sidon Constants in Boolean Cube Function SpacesDefant, A.Galicer, Daniel EricMansilla, Martin IgnacioMasty?o, MMuro, Luis Santiago MiguelProjection constantsBoolean functionslocal theory of Banach spaceshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The main aim of this work is to study important local Banach space constants for Boolean cube function spaces. Specifically, we focus on mathcal{B}_{mathcal{S}}^{N}, the finite-dimensional Banach space of all real-valued functions defined on the N-dimensional Boolean cube {-1, +1}^{N} that have Fourier–Walsh expansions supported on a fixed family of subsets of {1, ldots , N}. Our investigation centers on the projection, Sidon, and Gordon–Lewis constants of this function space. We combine tools from different areas to derive exact formulas and asymptotic estimates of these parameters for special types of families depending on the dimension of the Boolean cube and other complexity characteristics of the support set . Using local Banach space theory, we establish the intimate relationship among these three important constants.Fil: Defant, A.. Carl von Ossietzky Universität; AlemaniaFil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Mansilla, Martin Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Masty?o, M. Adam Mickiewicz University; PoloniaFil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaOxford University Press2024-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/257790Defant, A.; Galicer, Daniel Eric; Mansilla, Martin Ignacio; Masty?o, M; Muro, Luis Santiago Miguel; Asymptotic Insights for Projection, Gordon–Lewis, and Sidon Constants in Boolean Cube Function Spaces; Oxford University Press; International Mathematics Research Notices; 2024; 15; 8-2024; 11239-112701073-7928CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article/2024/15/11239/7687880info:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnae083info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:19:44Zoai:ri.conicet.gov.ar:11336/257790instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:19:45.023CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Asymptotic Insights for Projection, Gordon–Lewis, and Sidon Constants in Boolean Cube Function Spaces |
title |
Asymptotic Insights for Projection, Gordon–Lewis, and Sidon Constants in Boolean Cube Function Spaces |
spellingShingle |
Asymptotic Insights for Projection, Gordon–Lewis, and Sidon Constants in Boolean Cube Function Spaces Defant, A. Projection constants Boolean functions local theory of Banach spaces |
title_short |
Asymptotic Insights for Projection, Gordon–Lewis, and Sidon Constants in Boolean Cube Function Spaces |
title_full |
Asymptotic Insights for Projection, Gordon–Lewis, and Sidon Constants in Boolean Cube Function Spaces |
title_fullStr |
Asymptotic Insights for Projection, Gordon–Lewis, and Sidon Constants in Boolean Cube Function Spaces |
title_full_unstemmed |
Asymptotic Insights for Projection, Gordon–Lewis, and Sidon Constants in Boolean Cube Function Spaces |
title_sort |
Asymptotic Insights for Projection, Gordon–Lewis, and Sidon Constants in Boolean Cube Function Spaces |
dc.creator.none.fl_str_mv |
Defant, A. Galicer, Daniel Eric Mansilla, Martin Ignacio Masty?o, M Muro, Luis Santiago Miguel |
author |
Defant, A. |
author_facet |
Defant, A. Galicer, Daniel Eric Mansilla, Martin Ignacio Masty?o, M Muro, Luis Santiago Miguel |
author_role |
author |
author2 |
Galicer, Daniel Eric Mansilla, Martin Ignacio Masty?o, M Muro, Luis Santiago Miguel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Projection constants Boolean functions local theory of Banach spaces |
topic |
Projection constants Boolean functions local theory of Banach spaces |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The main aim of this work is to study important local Banach space constants for Boolean cube function spaces. Specifically, we focus on mathcal{B}_{mathcal{S}}^{N}, the finite-dimensional Banach space of all real-valued functions defined on the N-dimensional Boolean cube {-1, +1}^{N} that have Fourier–Walsh expansions supported on a fixed family of subsets of {1, ldots , N}. Our investigation centers on the projection, Sidon, and Gordon–Lewis constants of this function space. We combine tools from different areas to derive exact formulas and asymptotic estimates of these parameters for special types of families depending on the dimension of the Boolean cube and other complexity characteristics of the support set . Using local Banach space theory, we establish the intimate relationship among these three important constants. Fil: Defant, A.. Carl von Ossietzky Universität; Alemania Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Mansilla, Martin Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Masty?o, M. Adam Mickiewicz University; Polonia Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina |
description |
The main aim of this work is to study important local Banach space constants for Boolean cube function spaces. Specifically, we focus on mathcal{B}_{mathcal{S}}^{N}, the finite-dimensional Banach space of all real-valued functions defined on the N-dimensional Boolean cube {-1, +1}^{N} that have Fourier–Walsh expansions supported on a fixed family of subsets of {1, ldots , N}. Our investigation centers on the projection, Sidon, and Gordon–Lewis constants of this function space. We combine tools from different areas to derive exact formulas and asymptotic estimates of these parameters for special types of families depending on the dimension of the Boolean cube and other complexity characteristics of the support set . Using local Banach space theory, we establish the intimate relationship among these three important constants. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/257790 Defant, A.; Galicer, Daniel Eric; Mansilla, Martin Ignacio; Masty?o, M; Muro, Luis Santiago Miguel; Asymptotic Insights for Projection, Gordon–Lewis, and Sidon Constants in Boolean Cube Function Spaces; Oxford University Press; International Mathematics Research Notices; 2024; 15; 8-2024; 11239-11270 1073-7928 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/257790 |
identifier_str_mv |
Defant, A.; Galicer, Daniel Eric; Mansilla, Martin Ignacio; Masty?o, M; Muro, Luis Santiago Miguel; Asymptotic Insights for Projection, Gordon–Lewis, and Sidon Constants in Boolean Cube Function Spaces; Oxford University Press; International Mathematics Research Notices; 2024; 15; 8-2024; 11239-11270 1073-7928 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article/2024/15/11239/7687880 info:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnae083 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614171192197120 |
score |
13.070432 |