Supersingular zeros of divisor polynomials of elliptic curves of prime conductor

Autores
Kazalicki, Matija; Kohen, Daniel
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
For a prime number p, we study the zeros modulo p of divisor polynomials of rational elliptic curves E of conductor p. Ono (CBMS regional conference series in mathematics, 2003, vol 102, p. 118) made the observation that these zeros are often j-invariants of supersingular elliptic curves over Fp¯. We show that these supersingular zeros are in bijection with zeros modulo p of an associated quaternionic modular form vE. This allows us to prove that if the root number of E is - 1 then all supersingular j-invariants of elliptic curves defined over Fp are zeros of the corresponding divisor polynomial. If the root number is 1, we study the discrepancy between rank 0 and higher rank elliptic curves, as in the latter case the amount of supersingular zeros in Fp seems to be larger. In order to partially explain this phenomenon, we conjecture that when E has positive rank the values of the coefficients of vE corresponding to supersingular elliptic curves defined over Fp are even. We prove this conjecture in the case when the discriminant of E is positive, and obtain several other results that are of independent interest.
Fil: Kazalicki, Matija. University of Zagreb; Croacia
Fil: Kohen, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Materia
BRANDT MODULE
DIVISOR POLYNOMIAL
SUPERSINGULAR ELLIPTIC CURVES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55559

id CONICETDig_526a28e6f976d1d00c6902db7235f3d2
oai_identifier_str oai:ri.conicet.gov.ar:11336/55559
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Supersingular zeros of divisor polynomials of elliptic curves of prime conductorKazalicki, MatijaKohen, DanielBRANDT MODULEDIVISOR POLYNOMIALSUPERSINGULAR ELLIPTIC CURVEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For a prime number p, we study the zeros modulo p of divisor polynomials of rational elliptic curves E of conductor p. Ono (CBMS regional conference series in mathematics, 2003, vol 102, p. 118) made the observation that these zeros are often j-invariants of supersingular elliptic curves over Fp¯. We show that these supersingular zeros are in bijection with zeros modulo p of an associated quaternionic modular form vE. This allows us to prove that if the root number of E is - 1 then all supersingular j-invariants of elliptic curves defined over Fp are zeros of the corresponding divisor polynomial. If the root number is 1, we study the discrepancy between rank 0 and higher rank elliptic curves, as in the latter case the amount of supersingular zeros in Fp seems to be larger. In order to partially explain this phenomenon, we conjecture that when E has positive rank the values of the coefficients of vE corresponding to supersingular elliptic curves defined over Fp are even. We prove this conjecture in the case when the discriminant of E is positive, and obtain several other results that are of independent interest.Fil: Kazalicki, Matija. University of Zagreb; CroaciaFil: Kohen, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaSpringer2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55559Kazalicki, Matija; Kohen, Daniel; Supersingular zeros of divisor polynomials of elliptic curves of prime conductor; Springer; Research in Mathematical Sciences; 4; 10; 12-2017; 1-172197-9847CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://resmathsci.springeropen.com/articles/10.1186/s40687-017-0099-8info:eu-repo/semantics/altIdentifier/doi/10.1186/s40687-017-0099-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:07:45Zoai:ri.conicet.gov.ar:11336/55559instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:07:45.855CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Supersingular zeros of divisor polynomials of elliptic curves of prime conductor
title Supersingular zeros of divisor polynomials of elliptic curves of prime conductor
spellingShingle Supersingular zeros of divisor polynomials of elliptic curves of prime conductor
Kazalicki, Matija
BRANDT MODULE
DIVISOR POLYNOMIAL
SUPERSINGULAR ELLIPTIC CURVES
title_short Supersingular zeros of divisor polynomials of elliptic curves of prime conductor
title_full Supersingular zeros of divisor polynomials of elliptic curves of prime conductor
title_fullStr Supersingular zeros of divisor polynomials of elliptic curves of prime conductor
title_full_unstemmed Supersingular zeros of divisor polynomials of elliptic curves of prime conductor
title_sort Supersingular zeros of divisor polynomials of elliptic curves of prime conductor
dc.creator.none.fl_str_mv Kazalicki, Matija
Kohen, Daniel
author Kazalicki, Matija
author_facet Kazalicki, Matija
Kohen, Daniel
author_role author
author2 Kohen, Daniel
author2_role author
dc.subject.none.fl_str_mv BRANDT MODULE
DIVISOR POLYNOMIAL
SUPERSINGULAR ELLIPTIC CURVES
topic BRANDT MODULE
DIVISOR POLYNOMIAL
SUPERSINGULAR ELLIPTIC CURVES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv For a prime number p, we study the zeros modulo p of divisor polynomials of rational elliptic curves E of conductor p. Ono (CBMS regional conference series in mathematics, 2003, vol 102, p. 118) made the observation that these zeros are often j-invariants of supersingular elliptic curves over Fp¯. We show that these supersingular zeros are in bijection with zeros modulo p of an associated quaternionic modular form vE. This allows us to prove that if the root number of E is - 1 then all supersingular j-invariants of elliptic curves defined over Fp are zeros of the corresponding divisor polynomial. If the root number is 1, we study the discrepancy between rank 0 and higher rank elliptic curves, as in the latter case the amount of supersingular zeros in Fp seems to be larger. In order to partially explain this phenomenon, we conjecture that when E has positive rank the values of the coefficients of vE corresponding to supersingular elliptic curves defined over Fp are even. We prove this conjecture in the case when the discriminant of E is positive, and obtain several other results that are of independent interest.
Fil: Kazalicki, Matija. University of Zagreb; Croacia
Fil: Kohen, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
description For a prime number p, we study the zeros modulo p of divisor polynomials of rational elliptic curves E of conductor p. Ono (CBMS regional conference series in mathematics, 2003, vol 102, p. 118) made the observation that these zeros are often j-invariants of supersingular elliptic curves over Fp¯. We show that these supersingular zeros are in bijection with zeros modulo p of an associated quaternionic modular form vE. This allows us to prove that if the root number of E is - 1 then all supersingular j-invariants of elliptic curves defined over Fp are zeros of the corresponding divisor polynomial. If the root number is 1, we study the discrepancy between rank 0 and higher rank elliptic curves, as in the latter case the amount of supersingular zeros in Fp seems to be larger. In order to partially explain this phenomenon, we conjecture that when E has positive rank the values of the coefficients of vE corresponding to supersingular elliptic curves defined over Fp are even. We prove this conjecture in the case when the discriminant of E is positive, and obtain several other results that are of independent interest.
publishDate 2017
dc.date.none.fl_str_mv 2017-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55559
Kazalicki, Matija; Kohen, Daniel; Supersingular zeros of divisor polynomials of elliptic curves of prime conductor; Springer; Research in Mathematical Sciences; 4; 10; 12-2017; 1-17
2197-9847
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55559
identifier_str_mv Kazalicki, Matija; Kohen, Daniel; Supersingular zeros of divisor polynomials of elliptic curves of prime conductor; Springer; Research in Mathematical Sciences; 4; 10; 12-2017; 1-17
2197-9847
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://resmathsci.springeropen.com/articles/10.1186/s40687-017-0099-8
info:eu-repo/semantics/altIdentifier/doi/10.1186/s40687-017-0099-8
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980353863581696
score 12.993085