Supersingular zeros of divisor polynomials of elliptic curves of prime conductor
- Autores
- Kazalicki, Matija; Kohen, Daniel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For a prime number p, we study the zeros modulo p of divisor polynomials of rational elliptic curves E of conductor p. Ono (CBMS regional conference series in mathematics, 2003, vol 102, p. 118) made the observation that these zeros are often j-invariants of supersingular elliptic curves over Fp¯. We show that these supersingular zeros are in bijection with zeros modulo p of an associated quaternionic modular form vE. This allows us to prove that if the root number of E is - 1 then all supersingular j-invariants of elliptic curves defined over Fp are zeros of the corresponding divisor polynomial. If the root number is 1, we study the discrepancy between rank 0 and higher rank elliptic curves, as in the latter case the amount of supersingular zeros in Fp seems to be larger. In order to partially explain this phenomenon, we conjecture that when E has positive rank the values of the coefficients of vE corresponding to supersingular elliptic curves defined over Fp are even. We prove this conjecture in the case when the discriminant of E is positive, and obtain several other results that are of independent interest.
Fil: Kazalicki, Matija. University of Zagreb; Croacia
Fil: Kohen, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina - Materia
-
BRANDT MODULE
DIVISOR POLYNOMIAL
SUPERSINGULAR ELLIPTIC CURVES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55559
Ver los metadatos del registro completo
id |
CONICETDig_526a28e6f976d1d00c6902db7235f3d2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55559 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Supersingular zeros of divisor polynomials of elliptic curves of prime conductorKazalicki, MatijaKohen, DanielBRANDT MODULEDIVISOR POLYNOMIALSUPERSINGULAR ELLIPTIC CURVEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For a prime number p, we study the zeros modulo p of divisor polynomials of rational elliptic curves E of conductor p. Ono (CBMS regional conference series in mathematics, 2003, vol 102, p. 118) made the observation that these zeros are often j-invariants of supersingular elliptic curves over Fp¯. We show that these supersingular zeros are in bijection with zeros modulo p of an associated quaternionic modular form vE. This allows us to prove that if the root number of E is - 1 then all supersingular j-invariants of elliptic curves defined over Fp are zeros of the corresponding divisor polynomial. If the root number is 1, we study the discrepancy between rank 0 and higher rank elliptic curves, as in the latter case the amount of supersingular zeros in Fp seems to be larger. In order to partially explain this phenomenon, we conjecture that when E has positive rank the values of the coefficients of vE corresponding to supersingular elliptic curves defined over Fp are even. We prove this conjecture in the case when the discriminant of E is positive, and obtain several other results that are of independent interest.Fil: Kazalicki, Matija. University of Zagreb; CroaciaFil: Kohen, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaSpringer2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55559Kazalicki, Matija; Kohen, Daniel; Supersingular zeros of divisor polynomials of elliptic curves of prime conductor; Springer; Research in Mathematical Sciences; 4; 10; 12-2017; 1-172197-9847CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://resmathsci.springeropen.com/articles/10.1186/s40687-017-0099-8info:eu-repo/semantics/altIdentifier/doi/10.1186/s40687-017-0099-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:07:45Zoai:ri.conicet.gov.ar:11336/55559instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:07:45.855CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Supersingular zeros of divisor polynomials of elliptic curves of prime conductor |
title |
Supersingular zeros of divisor polynomials of elliptic curves of prime conductor |
spellingShingle |
Supersingular zeros of divisor polynomials of elliptic curves of prime conductor Kazalicki, Matija BRANDT MODULE DIVISOR POLYNOMIAL SUPERSINGULAR ELLIPTIC CURVES |
title_short |
Supersingular zeros of divisor polynomials of elliptic curves of prime conductor |
title_full |
Supersingular zeros of divisor polynomials of elliptic curves of prime conductor |
title_fullStr |
Supersingular zeros of divisor polynomials of elliptic curves of prime conductor |
title_full_unstemmed |
Supersingular zeros of divisor polynomials of elliptic curves of prime conductor |
title_sort |
Supersingular zeros of divisor polynomials of elliptic curves of prime conductor |
dc.creator.none.fl_str_mv |
Kazalicki, Matija Kohen, Daniel |
author |
Kazalicki, Matija |
author_facet |
Kazalicki, Matija Kohen, Daniel |
author_role |
author |
author2 |
Kohen, Daniel |
author2_role |
author |
dc.subject.none.fl_str_mv |
BRANDT MODULE DIVISOR POLYNOMIAL SUPERSINGULAR ELLIPTIC CURVES |
topic |
BRANDT MODULE DIVISOR POLYNOMIAL SUPERSINGULAR ELLIPTIC CURVES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
For a prime number p, we study the zeros modulo p of divisor polynomials of rational elliptic curves E of conductor p. Ono (CBMS regional conference series in mathematics, 2003, vol 102, p. 118) made the observation that these zeros are often j-invariants of supersingular elliptic curves over Fp¯. We show that these supersingular zeros are in bijection with zeros modulo p of an associated quaternionic modular form vE. This allows us to prove that if the root number of E is - 1 then all supersingular j-invariants of elliptic curves defined over Fp are zeros of the corresponding divisor polynomial. If the root number is 1, we study the discrepancy between rank 0 and higher rank elliptic curves, as in the latter case the amount of supersingular zeros in Fp seems to be larger. In order to partially explain this phenomenon, we conjecture that when E has positive rank the values of the coefficients of vE corresponding to supersingular elliptic curves defined over Fp are even. We prove this conjecture in the case when the discriminant of E is positive, and obtain several other results that are of independent interest. Fil: Kazalicki, Matija. University of Zagreb; Croacia Fil: Kohen, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina |
description |
For a prime number p, we study the zeros modulo p of divisor polynomials of rational elliptic curves E of conductor p. Ono (CBMS regional conference series in mathematics, 2003, vol 102, p. 118) made the observation that these zeros are often j-invariants of supersingular elliptic curves over Fp¯. We show that these supersingular zeros are in bijection with zeros modulo p of an associated quaternionic modular form vE. This allows us to prove that if the root number of E is - 1 then all supersingular j-invariants of elliptic curves defined over Fp are zeros of the corresponding divisor polynomial. If the root number is 1, we study the discrepancy between rank 0 and higher rank elliptic curves, as in the latter case the amount of supersingular zeros in Fp seems to be larger. In order to partially explain this phenomenon, we conjecture that when E has positive rank the values of the coefficients of vE corresponding to supersingular elliptic curves defined over Fp are even. We prove this conjecture in the case when the discriminant of E is positive, and obtain several other results that are of independent interest. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55559 Kazalicki, Matija; Kohen, Daniel; Supersingular zeros of divisor polynomials of elliptic curves of prime conductor; Springer; Research in Mathematical Sciences; 4; 10; 12-2017; 1-17 2197-9847 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55559 |
identifier_str_mv |
Kazalicki, Matija; Kohen, Daniel; Supersingular zeros of divisor polynomials of elliptic curves of prime conductor; Springer; Research in Mathematical Sciences; 4; 10; 12-2017; 1-17 2197-9847 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://resmathsci.springeropen.com/articles/10.1186/s40687-017-0099-8 info:eu-repo/semantics/altIdentifier/doi/10.1186/s40687-017-0099-8 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980353863581696 |
score |
12.993085 |