Proving Modularity for a given elliptic curve over an imaginary quadratic field
- Autores
- Dieulefait, Luis; Guerberoff, Lucio; Pacetti, Ariel Martín
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present an algorithm to determine if the L-series associated to an automorphic representation and the one associated to an elliptic curve over an imaginary quadratic field agree. By the work of Harris-Soudry-Taylor, Taylor and Berger-Harcos (cf. [HST93], [Tay94] and [BH07]) we can associate to an automorphic representation a family of compatible ℓ-adic representations. Our algorithm is based on Faltings-Serre’s method to prove that ℓ-adic Galois representations are isomorphic. Using the algorithm we provide the first examples of modular elliptic curves over imaginary quadratic fields with residual 2-adic image isomorphic to S3 and C3.
Fil: Dieulefait, Luis. Universidad de Barcelona; España
Fil: Guerberoff, Lucio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universite Paris Diderot - Paris 7; Francia
Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Elliptic curves
Modularity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15075
Ver los metadatos del registro completo
| id |
CONICETDig_8a0427d78d08b622fdb6345aa2bd42d1 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15075 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Proving Modularity for a given elliptic curve over an imaginary quadratic fieldDieulefait, LuisGuerberoff, LucioPacetti, Ariel MartínElliptic curvesModularityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present an algorithm to determine if the L-series associated to an automorphic representation and the one associated to an elliptic curve over an imaginary quadratic field agree. By the work of Harris-Soudry-Taylor, Taylor and Berger-Harcos (cf. [HST93], [Tay94] and [BH07]) we can associate to an automorphic representation a family of compatible ℓ-adic representations. Our algorithm is based on Faltings-Serre’s method to prove that ℓ-adic Galois representations are isomorphic. Using the algorithm we provide the first examples of modular elliptic curves over imaginary quadratic fields with residual 2-adic image isomorphic to S3 and C3.Fil: Dieulefait, Luis. Universidad de Barcelona; EspañaFil: Guerberoff, Lucio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universite Paris Diderot - Paris 7; FranciaFil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAmerican Mathematical Society2010-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15075Dieulefait, Luis; Guerberoff, Lucio; Pacetti, Ariel Martín; Proving Modularity for a given elliptic curve over an imaginary quadratic field; American Mathematical Society; Mathematics Of Computation; 79; 270; 4-2010; 1145-11700025-5718enginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/mcom/2010-79-270/S0025-5718-09-02291-1/info:eu-repo/semantics/altIdentifier/doi/10.1090/S0025-5718-09-02291-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:35:31Zoai:ri.conicet.gov.ar:11336/15075instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:35:32.108CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Proving Modularity for a given elliptic curve over an imaginary quadratic field |
| title |
Proving Modularity for a given elliptic curve over an imaginary quadratic field |
| spellingShingle |
Proving Modularity for a given elliptic curve over an imaginary quadratic field Dieulefait, Luis Elliptic curves Modularity |
| title_short |
Proving Modularity for a given elliptic curve over an imaginary quadratic field |
| title_full |
Proving Modularity for a given elliptic curve over an imaginary quadratic field |
| title_fullStr |
Proving Modularity for a given elliptic curve over an imaginary quadratic field |
| title_full_unstemmed |
Proving Modularity for a given elliptic curve over an imaginary quadratic field |
| title_sort |
Proving Modularity for a given elliptic curve over an imaginary quadratic field |
| dc.creator.none.fl_str_mv |
Dieulefait, Luis Guerberoff, Lucio Pacetti, Ariel Martín |
| author |
Dieulefait, Luis |
| author_facet |
Dieulefait, Luis Guerberoff, Lucio Pacetti, Ariel Martín |
| author_role |
author |
| author2 |
Guerberoff, Lucio Pacetti, Ariel Martín |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Elliptic curves Modularity |
| topic |
Elliptic curves Modularity |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We present an algorithm to determine if the L-series associated to an automorphic representation and the one associated to an elliptic curve over an imaginary quadratic field agree. By the work of Harris-Soudry-Taylor, Taylor and Berger-Harcos (cf. [HST93], [Tay94] and [BH07]) we can associate to an automorphic representation a family of compatible ℓ-adic representations. Our algorithm is based on Faltings-Serre’s method to prove that ℓ-adic Galois representations are isomorphic. Using the algorithm we provide the first examples of modular elliptic curves over imaginary quadratic fields with residual 2-adic image isomorphic to S3 and C3. Fil: Dieulefait, Luis. Universidad de Barcelona; España Fil: Guerberoff, Lucio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universite Paris Diderot - Paris 7; Francia Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
| description |
We present an algorithm to determine if the L-series associated to an automorphic representation and the one associated to an elliptic curve over an imaginary quadratic field agree. By the work of Harris-Soudry-Taylor, Taylor and Berger-Harcos (cf. [HST93], [Tay94] and [BH07]) we can associate to an automorphic representation a family of compatible ℓ-adic representations. Our algorithm is based on Faltings-Serre’s method to prove that ℓ-adic Galois representations are isomorphic. Using the algorithm we provide the first examples of modular elliptic curves over imaginary quadratic fields with residual 2-adic image isomorphic to S3 and C3. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15075 Dieulefait, Luis; Guerberoff, Lucio; Pacetti, Ariel Martín; Proving Modularity for a given elliptic curve over an imaginary quadratic field; American Mathematical Society; Mathematics Of Computation; 79; 270; 4-2010; 1145-1170 0025-5718 |
| url |
http://hdl.handle.net/11336/15075 |
| identifier_str_mv |
Dieulefait, Luis; Guerberoff, Lucio; Pacetti, Ariel Martín; Proving Modularity for a given elliptic curve over an imaginary quadratic field; American Mathematical Society; Mathematics Of Computation; 79; 270; 4-2010; 1145-1170 0025-5718 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/mcom/2010-79-270/S0025-5718-09-02291-1/ info:eu-repo/semantics/altIdentifier/doi/10.1090/S0025-5718-09-02291-1 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Mathematical Society |
| publisher.none.fl_str_mv |
American Mathematical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847976783152939008 |
| score |
13.087074 |