On a special case of Watkins’ conjecture
- Autores
- Kazalicki, Matija; Kohen, Daniel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Watkins’ conjecture asserts that for a rational elliptic curve E the degree of the modular parametrization is divisible by 2r, where r is the rank of E. In this paper, we prove that if the modular degree is odd, then E has rank zero. Moreover, we prove that the conjecture holds for all rank two rational elliptic curves of prime conductor and positive discriminant.
Fil: Kazalicki, Matija. University of Sagreb; Croacia
Fil: Kohen, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina - Materia
-
Modular
Degree - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55470
Ver los metadatos del registro completo
id |
CONICETDig_b710166b67926d05346ef45d5524f779 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55470 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On a special case of Watkins’ conjectureKazalicki, MatijaKohen, DanielModularDegreehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Watkins’ conjecture asserts that for a rational elliptic curve E the degree of the modular parametrization is divisible by 2r, where r is the rank of E. In this paper, we prove that if the modular degree is odd, then E has rank zero. Moreover, we prove that the conjecture holds for all rank two rational elliptic curves of prime conductor and positive discriminant.Fil: Kazalicki, Matija. University of Sagreb; CroaciaFil: Kohen, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaAmerican Mathematical Society2017-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55470Kazalicki, Matija; Kohen, Daniel; On a special case of Watkins’ conjecture; American Mathematical Society; Proceedings of the American Mathematical Society; 146; 2; 4-2017; 541-5450002-9939CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2018-146-02/S0002-9939-2017-13759-9/info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/13759info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:38Zoai:ri.conicet.gov.ar:11336/55470instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:38.508CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On a special case of Watkins’ conjecture |
title |
On a special case of Watkins’ conjecture |
spellingShingle |
On a special case of Watkins’ conjecture Kazalicki, Matija Modular Degree |
title_short |
On a special case of Watkins’ conjecture |
title_full |
On a special case of Watkins’ conjecture |
title_fullStr |
On a special case of Watkins’ conjecture |
title_full_unstemmed |
On a special case of Watkins’ conjecture |
title_sort |
On a special case of Watkins’ conjecture |
dc.creator.none.fl_str_mv |
Kazalicki, Matija Kohen, Daniel |
author |
Kazalicki, Matija |
author_facet |
Kazalicki, Matija Kohen, Daniel |
author_role |
author |
author2 |
Kohen, Daniel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Modular Degree |
topic |
Modular Degree |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Watkins’ conjecture asserts that for a rational elliptic curve E the degree of the modular parametrization is divisible by 2r, where r is the rank of E. In this paper, we prove that if the modular degree is odd, then E has rank zero. Moreover, we prove that the conjecture holds for all rank two rational elliptic curves of prime conductor and positive discriminant. Fil: Kazalicki, Matija. University of Sagreb; Croacia Fil: Kohen, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina |
description |
Watkins’ conjecture asserts that for a rational elliptic curve E the degree of the modular parametrization is divisible by 2r, where r is the rank of E. In this paper, we prove that if the modular degree is odd, then E has rank zero. Moreover, we prove that the conjecture holds for all rank two rational elliptic curves of prime conductor and positive discriminant. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55470 Kazalicki, Matija; Kohen, Daniel; On a special case of Watkins’ conjecture; American Mathematical Society; Proceedings of the American Mathematical Society; 146; 2; 4-2017; 541-545 0002-9939 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55470 |
identifier_str_mv |
Kazalicki, Matija; Kohen, Daniel; On a special case of Watkins’ conjecture; American Mathematical Society; Proceedings of the American Mathematical Society; 146; 2; 4-2017; 541-545 0002-9939 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2018-146-02/S0002-9939-2017-13759-9/ info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/13759 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613221872304128 |
score |
13.070432 |