Mean estimation with data missing at random for functional covariables

Autores
Ferraty, Frédéric; Sued, Raquel Mariela; Vieu, Philippe
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In a missing-data setting, we want to estimate the mean of a scalar outcome, based on a sample in which an explanatory variable is observed for every subject while responses are missing by happenstance for some of them. We consider two kinds of estimates of the mean response when the explanatory variable is functional. One is based on the average of the predicted values and the second one is a functional adaptation of the Horvitz-Thompson estimator. We show that the infinite dimensionality of the problem does not affect the rates of convergence by stating that the estimates are root-n consistent, under missing at random (MAR) assumption. These asymptotic features are completed by simulated experiments illustrating the easiness of implementation and the good behaviour on finite sample sizes of the method. This is the first paper emphasizing that the insensitiveness of averaged estimates, well known in multivariate non-parametric statistics, remains true for an infinite-dimensional covariable. In this sense, this work opens the way for various other results of this kind in functional data analysis.
Fil: Ferraty, Frédéric. Universite Paul Sabatier. Institut de Mathematiques de Toulouse; Francia
Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vieu, Philippe. Universite Paul Sabatier. Institut de Mathematiques de Toulouse; Francia
Materia
Averaged Non-Parametric Estimates
Functional Covariable
Missing at Random
Non-Parametric Functional Kernel Regression
Root-N Consistency
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/68289

id CONICETDig_486602237bda8681f09e493c303c26d7
oai_identifier_str oai:ri.conicet.gov.ar:11336/68289
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Mean estimation with data missing at random for functional covariablesFerraty, FrédéricSued, Raquel MarielaVieu, PhilippeAveraged Non-Parametric EstimatesFunctional CovariableMissing at RandomNon-Parametric Functional Kernel RegressionRoot-N Consistencyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In a missing-data setting, we want to estimate the mean of a scalar outcome, based on a sample in which an explanatory variable is observed for every subject while responses are missing by happenstance for some of them. We consider two kinds of estimates of the mean response when the explanatory variable is functional. One is based on the average of the predicted values and the second one is a functional adaptation of the Horvitz-Thompson estimator. We show that the infinite dimensionality of the problem does not affect the rates of convergence by stating that the estimates are root-n consistent, under missing at random (MAR) assumption. These asymptotic features are completed by simulated experiments illustrating the easiness of implementation and the good behaviour on finite sample sizes of the method. This is the first paper emphasizing that the insensitiveness of averaged estimates, well known in multivariate non-parametric statistics, remains true for an infinite-dimensional covariable. In this sense, this work opens the way for various other results of this kind in functional data analysis.Fil: Ferraty, Frédéric. Universite Paul Sabatier. Institut de Mathematiques de Toulouse; FranciaFil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vieu, Philippe. Universite Paul Sabatier. Institut de Mathematiques de Toulouse; FranciaTaylor & Francis2013-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68289Ferraty, Frédéric; Sued, Raquel Mariela; Vieu, Philippe; Mean estimation with data missing at random for functional covariables; Taylor & Francis; Statistics; 47; 4; 8-2013; 688-7060233-1888CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/02331888.2011.650172info:eu-repo/semantics/altIdentifier/doi/10.1080/02331888.2011.650172info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:47:56Zoai:ri.conicet.gov.ar:11336/68289instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:47:57.097CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Mean estimation with data missing at random for functional covariables
title Mean estimation with data missing at random for functional covariables
spellingShingle Mean estimation with data missing at random for functional covariables
Ferraty, Frédéric
Averaged Non-Parametric Estimates
Functional Covariable
Missing at Random
Non-Parametric Functional Kernel Regression
Root-N Consistency
title_short Mean estimation with data missing at random for functional covariables
title_full Mean estimation with data missing at random for functional covariables
title_fullStr Mean estimation with data missing at random for functional covariables
title_full_unstemmed Mean estimation with data missing at random for functional covariables
title_sort Mean estimation with data missing at random for functional covariables
dc.creator.none.fl_str_mv Ferraty, Frédéric
Sued, Raquel Mariela
Vieu, Philippe
author Ferraty, Frédéric
author_facet Ferraty, Frédéric
Sued, Raquel Mariela
Vieu, Philippe
author_role author
author2 Sued, Raquel Mariela
Vieu, Philippe
author2_role author
author
dc.subject.none.fl_str_mv Averaged Non-Parametric Estimates
Functional Covariable
Missing at Random
Non-Parametric Functional Kernel Regression
Root-N Consistency
topic Averaged Non-Parametric Estimates
Functional Covariable
Missing at Random
Non-Parametric Functional Kernel Regression
Root-N Consistency
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In a missing-data setting, we want to estimate the mean of a scalar outcome, based on a sample in which an explanatory variable is observed for every subject while responses are missing by happenstance for some of them. We consider two kinds of estimates of the mean response when the explanatory variable is functional. One is based on the average of the predicted values and the second one is a functional adaptation of the Horvitz-Thompson estimator. We show that the infinite dimensionality of the problem does not affect the rates of convergence by stating that the estimates are root-n consistent, under missing at random (MAR) assumption. These asymptotic features are completed by simulated experiments illustrating the easiness of implementation and the good behaviour on finite sample sizes of the method. This is the first paper emphasizing that the insensitiveness of averaged estimates, well known in multivariate non-parametric statistics, remains true for an infinite-dimensional covariable. In this sense, this work opens the way for various other results of this kind in functional data analysis.
Fil: Ferraty, Frédéric. Universite Paul Sabatier. Institut de Mathematiques de Toulouse; Francia
Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vieu, Philippe. Universite Paul Sabatier. Institut de Mathematiques de Toulouse; Francia
description In a missing-data setting, we want to estimate the mean of a scalar outcome, based on a sample in which an explanatory variable is observed for every subject while responses are missing by happenstance for some of them. We consider two kinds of estimates of the mean response when the explanatory variable is functional. One is based on the average of the predicted values and the second one is a functional adaptation of the Horvitz-Thompson estimator. We show that the infinite dimensionality of the problem does not affect the rates of convergence by stating that the estimates are root-n consistent, under missing at random (MAR) assumption. These asymptotic features are completed by simulated experiments illustrating the easiness of implementation and the good behaviour on finite sample sizes of the method. This is the first paper emphasizing that the insensitiveness of averaged estimates, well known in multivariate non-parametric statistics, remains true for an infinite-dimensional covariable. In this sense, this work opens the way for various other results of this kind in functional data analysis.
publishDate 2013
dc.date.none.fl_str_mv 2013-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/68289
Ferraty, Frédéric; Sued, Raquel Mariela; Vieu, Philippe; Mean estimation with data missing at random for functional covariables; Taylor & Francis; Statistics; 47; 4; 8-2013; 688-706
0233-1888
CONICET Digital
CONICET
url http://hdl.handle.net/11336/68289
identifier_str_mv Ferraty, Frédéric; Sued, Raquel Mariela; Vieu, Philippe; Mean estimation with data missing at random for functional covariables; Taylor & Francis; Statistics; 47; 4; 8-2013; 688-706
0233-1888
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/02331888.2011.650172
info:eu-repo/semantics/altIdentifier/doi/10.1080/02331888.2011.650172
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782184367587328
score 12.982451