Mean estimation with data missing at random for functional covariables
- Autores
- Ferraty, Frédéric; Sued, Raquel Mariela; Vieu, Philippe
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In a missing-data setting, we want to estimate the mean of a scalar outcome, based on a sample in which an explanatory variable is observed for every subject while responses are missing by happenstance for some of them. We consider two kinds of estimates of the mean response when the explanatory variable is functional. One is based on the average of the predicted values and the second one is a functional adaptation of the Horvitz-Thompson estimator. We show that the infinite dimensionality of the problem does not affect the rates of convergence by stating that the estimates are root-n consistent, under missing at random (MAR) assumption. These asymptotic features are completed by simulated experiments illustrating the easiness of implementation and the good behaviour on finite sample sizes of the method. This is the first paper emphasizing that the insensitiveness of averaged estimates, well known in multivariate non-parametric statistics, remains true for an infinite-dimensional covariable. In this sense, this work opens the way for various other results of this kind in functional data analysis.
Fil: Ferraty, Frédéric. Universite Paul Sabatier. Institut de Mathematiques de Toulouse; Francia
Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vieu, Philippe. Universite Paul Sabatier. Institut de Mathematiques de Toulouse; Francia - Materia
-
Averaged Non-Parametric Estimates
Functional Covariable
Missing at Random
Non-Parametric Functional Kernel Regression
Root-N Consistency - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/68289
Ver los metadatos del registro completo
| id |
CONICETDig_486602237bda8681f09e493c303c26d7 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/68289 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Mean estimation with data missing at random for functional covariablesFerraty, FrédéricSued, Raquel MarielaVieu, PhilippeAveraged Non-Parametric EstimatesFunctional CovariableMissing at RandomNon-Parametric Functional Kernel RegressionRoot-N Consistencyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In a missing-data setting, we want to estimate the mean of a scalar outcome, based on a sample in which an explanatory variable is observed for every subject while responses are missing by happenstance for some of them. We consider two kinds of estimates of the mean response when the explanatory variable is functional. One is based on the average of the predicted values and the second one is a functional adaptation of the Horvitz-Thompson estimator. We show that the infinite dimensionality of the problem does not affect the rates of convergence by stating that the estimates are root-n consistent, under missing at random (MAR) assumption. These asymptotic features are completed by simulated experiments illustrating the easiness of implementation and the good behaviour on finite sample sizes of the method. This is the first paper emphasizing that the insensitiveness of averaged estimates, well known in multivariate non-parametric statistics, remains true for an infinite-dimensional covariable. In this sense, this work opens the way for various other results of this kind in functional data analysis.Fil: Ferraty, Frédéric. Universite Paul Sabatier. Institut de Mathematiques de Toulouse; FranciaFil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vieu, Philippe. Universite Paul Sabatier. Institut de Mathematiques de Toulouse; FranciaTaylor & Francis2013-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68289Ferraty, Frédéric; Sued, Raquel Mariela; Vieu, Philippe; Mean estimation with data missing at random for functional covariables; Taylor & Francis; Statistics; 47; 4; 8-2013; 688-7060233-1888CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/02331888.2011.650172info:eu-repo/semantics/altIdentifier/doi/10.1080/02331888.2011.650172info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:47:56Zoai:ri.conicet.gov.ar:11336/68289instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:47:57.097CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Mean estimation with data missing at random for functional covariables |
| title |
Mean estimation with data missing at random for functional covariables |
| spellingShingle |
Mean estimation with data missing at random for functional covariables Ferraty, Frédéric Averaged Non-Parametric Estimates Functional Covariable Missing at Random Non-Parametric Functional Kernel Regression Root-N Consistency |
| title_short |
Mean estimation with data missing at random for functional covariables |
| title_full |
Mean estimation with data missing at random for functional covariables |
| title_fullStr |
Mean estimation with data missing at random for functional covariables |
| title_full_unstemmed |
Mean estimation with data missing at random for functional covariables |
| title_sort |
Mean estimation with data missing at random for functional covariables |
| dc.creator.none.fl_str_mv |
Ferraty, Frédéric Sued, Raquel Mariela Vieu, Philippe |
| author |
Ferraty, Frédéric |
| author_facet |
Ferraty, Frédéric Sued, Raquel Mariela Vieu, Philippe |
| author_role |
author |
| author2 |
Sued, Raquel Mariela Vieu, Philippe |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Averaged Non-Parametric Estimates Functional Covariable Missing at Random Non-Parametric Functional Kernel Regression Root-N Consistency |
| topic |
Averaged Non-Parametric Estimates Functional Covariable Missing at Random Non-Parametric Functional Kernel Regression Root-N Consistency |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In a missing-data setting, we want to estimate the mean of a scalar outcome, based on a sample in which an explanatory variable is observed for every subject while responses are missing by happenstance for some of them. We consider two kinds of estimates of the mean response when the explanatory variable is functional. One is based on the average of the predicted values and the second one is a functional adaptation of the Horvitz-Thompson estimator. We show that the infinite dimensionality of the problem does not affect the rates of convergence by stating that the estimates are root-n consistent, under missing at random (MAR) assumption. These asymptotic features are completed by simulated experiments illustrating the easiness of implementation and the good behaviour on finite sample sizes of the method. This is the first paper emphasizing that the insensitiveness of averaged estimates, well known in multivariate non-parametric statistics, remains true for an infinite-dimensional covariable. In this sense, this work opens the way for various other results of this kind in functional data analysis. Fil: Ferraty, Frédéric. Universite Paul Sabatier. Institut de Mathematiques de Toulouse; Francia Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Vieu, Philippe. Universite Paul Sabatier. Institut de Mathematiques de Toulouse; Francia |
| description |
In a missing-data setting, we want to estimate the mean of a scalar outcome, based on a sample in which an explanatory variable is observed for every subject while responses are missing by happenstance for some of them. We consider two kinds of estimates of the mean response when the explanatory variable is functional. One is based on the average of the predicted values and the second one is a functional adaptation of the Horvitz-Thompson estimator. We show that the infinite dimensionality of the problem does not affect the rates of convergence by stating that the estimates are root-n consistent, under missing at random (MAR) assumption. These asymptotic features are completed by simulated experiments illustrating the easiness of implementation and the good behaviour on finite sample sizes of the method. This is the first paper emphasizing that the insensitiveness of averaged estimates, well known in multivariate non-parametric statistics, remains true for an infinite-dimensional covariable. In this sense, this work opens the way for various other results of this kind in functional data analysis. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/68289 Ferraty, Frédéric; Sued, Raquel Mariela; Vieu, Philippe; Mean estimation with data missing at random for functional covariables; Taylor & Francis; Statistics; 47; 4; 8-2013; 688-706 0233-1888 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/68289 |
| identifier_str_mv |
Ferraty, Frédéric; Sued, Raquel Mariela; Vieu, Philippe; Mean estimation with data missing at random for functional covariables; Taylor & Francis; Statistics; 47; 4; 8-2013; 688-706 0233-1888 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/02331888.2011.650172 info:eu-repo/semantics/altIdentifier/doi/10.1080/02331888.2011.650172 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Taylor & Francis |
| publisher.none.fl_str_mv |
Taylor & Francis |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782184367587328 |
| score |
12.982451 |