Localization of negative energy and the Bekenstein bound

Autores
Blanco, David Daniel; Casini, Horacio German
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Relative entropy between two states in the same Hilbert space is a fundamental statistical measure of the distance between these states. Relative entropy is always positive and increasing with the system size. Interestingly, for two states which are infinitesimally different to each other, vanishing of relative entropy gives a powerful equation ΔS=ΔH for the first order variation of the entanglement entropy ΔS and the expectation value of the modu Hamiltonian ΔH. We evaluate relative entropy between the vacuum and other states for spherical regions in the AdS/CFT framework. We check that the relevant equations and inequalities hold for a large class of states, giving a strong support to the holographic entropy formula. We elaborate on potential uses of the equation ΔS=ΔH for vacuum state tomography and obtain modified versions of the Bekenstein bound.
Fil: Blanco, David Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Bekenstein bound
Negative energy
Entanglement entropy
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/26679

id CONICETDig_4ff16f682d7c0caa6a870eb7a4407de6
oai_identifier_str oai:ri.conicet.gov.ar:11336/26679
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Localization of negative energy and the Bekenstein boundBlanco, David DanielCasini, Horacio GermanBekenstein boundNegative energyEntanglement entropyhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Relative entropy between two states in the same Hilbert space is a fundamental statistical measure of the distance between these states. Relative entropy is always positive and increasing with the system size. Interestingly, for two states which are infinitesimally different to each other, vanishing of relative entropy gives a powerful equation ΔS=ΔH for the first order variation of the entanglement entropy ΔS and the expectation value of the modu Hamiltonian ΔH. We evaluate relative entropy between the vacuum and other states for spherical regions in the AdS/CFT framework. We check that the relevant equations and inequalities hold for a large class of states, giving a strong support to the holographic entropy formula. We elaborate on potential uses of the equation ΔS=ΔH for vacuum state tomography and obtain modified versions of the Bekenstein bound.Fil: Blanco, David Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Physical Society2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26679Blanco, David Daniel; Casini, Horacio German; Localization of negative energy and the Bekenstein bound; American Physical Society; Physical Review Letters; 111; 22; 11-2013; 1-5; 2216010031-9007CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.111.221601info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.221601info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1309.1121info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:55:02Zoai:ri.conicet.gov.ar:11336/26679instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:55:02.713CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Localization of negative energy and the Bekenstein bound
title Localization of negative energy and the Bekenstein bound
spellingShingle Localization of negative energy and the Bekenstein bound
Blanco, David Daniel
Bekenstein bound
Negative energy
Entanglement entropy
title_short Localization of negative energy and the Bekenstein bound
title_full Localization of negative energy and the Bekenstein bound
title_fullStr Localization of negative energy and the Bekenstein bound
title_full_unstemmed Localization of negative energy and the Bekenstein bound
title_sort Localization of negative energy and the Bekenstein bound
dc.creator.none.fl_str_mv Blanco, David Daniel
Casini, Horacio German
author Blanco, David Daniel
author_facet Blanco, David Daniel
Casini, Horacio German
author_role author
author2 Casini, Horacio German
author2_role author
dc.subject.none.fl_str_mv Bekenstein bound
Negative energy
Entanglement entropy
topic Bekenstein bound
Negative energy
Entanglement entropy
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Relative entropy between two states in the same Hilbert space is a fundamental statistical measure of the distance between these states. Relative entropy is always positive and increasing with the system size. Interestingly, for two states which are infinitesimally different to each other, vanishing of relative entropy gives a powerful equation ΔS=ΔH for the first order variation of the entanglement entropy ΔS and the expectation value of the modu Hamiltonian ΔH. We evaluate relative entropy between the vacuum and other states for spherical regions in the AdS/CFT framework. We check that the relevant equations and inequalities hold for a large class of states, giving a strong support to the holographic entropy formula. We elaborate on potential uses of the equation ΔS=ΔH for vacuum state tomography and obtain modified versions of the Bekenstein bound.
Fil: Blanco, David Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Relative entropy between two states in the same Hilbert space is a fundamental statistical measure of the distance between these states. Relative entropy is always positive and increasing with the system size. Interestingly, for two states which are infinitesimally different to each other, vanishing of relative entropy gives a powerful equation ΔS=ΔH for the first order variation of the entanglement entropy ΔS and the expectation value of the modu Hamiltonian ΔH. We evaluate relative entropy between the vacuum and other states for spherical regions in the AdS/CFT framework. We check that the relevant equations and inequalities hold for a large class of states, giving a strong support to the holographic entropy formula. We elaborate on potential uses of the equation ΔS=ΔH for vacuum state tomography and obtain modified versions of the Bekenstein bound.
publishDate 2013
dc.date.none.fl_str_mv 2013-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/26679
Blanco, David Daniel; Casini, Horacio German; Localization of negative energy and the Bekenstein bound; American Physical Society; Physical Review Letters; 111; 22; 11-2013; 1-5; 221601
0031-9007
CONICET Digital
CONICET
url http://hdl.handle.net/11336/26679
identifier_str_mv Blanco, David Daniel; Casini, Horacio German; Localization of negative energy and the Bekenstein bound; American Physical Society; Physical Review Letters; 111; 22; 11-2013; 1-5; 221601
0031-9007
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.111.221601
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.221601
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1309.1121
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782251477499904
score 12.982451