Localization of negative energy and the Bekenstein bound
- Autores
- Blanco, David Daniel; Casini, Horacio German
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Relative entropy between two states in the same Hilbert space is a fundamental statistical measure of the distance between these states. Relative entropy is always positive and increasing with the system size. Interestingly, for two states which are infinitesimally different to each other, vanishing of relative entropy gives a powerful equation ΔS=ΔH for the first order variation of the entanglement entropy ΔS and the expectation value of the modu Hamiltonian ΔH. We evaluate relative entropy between the vacuum and other states for spherical regions in the AdS/CFT framework. We check that the relevant equations and inequalities hold for a large class of states, giving a strong support to the holographic entropy formula. We elaborate on potential uses of the equation ΔS=ΔH for vacuum state tomography and obtain modified versions of the Bekenstein bound.
Fil: Blanco, David Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Bekenstein bound
Negative energy
Entanglement entropy - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/26679
Ver los metadatos del registro completo
id |
CONICETDig_4ff16f682d7c0caa6a870eb7a4407de6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/26679 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Localization of negative energy and the Bekenstein boundBlanco, David DanielCasini, Horacio GermanBekenstein boundNegative energyEntanglement entropyhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Relative entropy between two states in the same Hilbert space is a fundamental statistical measure of the distance between these states. Relative entropy is always positive and increasing with the system size. Interestingly, for two states which are infinitesimally different to each other, vanishing of relative entropy gives a powerful equation ΔS=ΔH for the first order variation of the entanglement entropy ΔS and the expectation value of the modu Hamiltonian ΔH. We evaluate relative entropy between the vacuum and other states for spherical regions in the AdS/CFT framework. We check that the relevant equations and inequalities hold for a large class of states, giving a strong support to the holographic entropy formula. We elaborate on potential uses of the equation ΔS=ΔH for vacuum state tomography and obtain modified versions of the Bekenstein bound.Fil: Blanco, David Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Physical Society2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26679Blanco, David Daniel; Casini, Horacio German; Localization of negative energy and the Bekenstein bound; American Physical Society; Physical Review Letters; 111; 22; 11-2013; 1-5; 2216010031-9007CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.111.221601info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.221601info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1309.1121info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:55:02Zoai:ri.conicet.gov.ar:11336/26679instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:55:02.713CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Localization of negative energy and the Bekenstein bound |
title |
Localization of negative energy and the Bekenstein bound |
spellingShingle |
Localization of negative energy and the Bekenstein bound Blanco, David Daniel Bekenstein bound Negative energy Entanglement entropy |
title_short |
Localization of negative energy and the Bekenstein bound |
title_full |
Localization of negative energy and the Bekenstein bound |
title_fullStr |
Localization of negative energy and the Bekenstein bound |
title_full_unstemmed |
Localization of negative energy and the Bekenstein bound |
title_sort |
Localization of negative energy and the Bekenstein bound |
dc.creator.none.fl_str_mv |
Blanco, David Daniel Casini, Horacio German |
author |
Blanco, David Daniel |
author_facet |
Blanco, David Daniel Casini, Horacio German |
author_role |
author |
author2 |
Casini, Horacio German |
author2_role |
author |
dc.subject.none.fl_str_mv |
Bekenstein bound Negative energy Entanglement entropy |
topic |
Bekenstein bound Negative energy Entanglement entropy |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Relative entropy between two states in the same Hilbert space is a fundamental statistical measure of the distance between these states. Relative entropy is always positive and increasing with the system size. Interestingly, for two states which are infinitesimally different to each other, vanishing of relative entropy gives a powerful equation ΔS=ΔH for the first order variation of the entanglement entropy ΔS and the expectation value of the modu Hamiltonian ΔH. We evaluate relative entropy between the vacuum and other states for spherical regions in the AdS/CFT framework. We check that the relevant equations and inequalities hold for a large class of states, giving a strong support to the holographic entropy formula. We elaborate on potential uses of the equation ΔS=ΔH for vacuum state tomography and obtain modified versions of the Bekenstein bound. Fil: Blanco, David Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Relative entropy between two states in the same Hilbert space is a fundamental statistical measure of the distance between these states. Relative entropy is always positive and increasing with the system size. Interestingly, for two states which are infinitesimally different to each other, vanishing of relative entropy gives a powerful equation ΔS=ΔH for the first order variation of the entanglement entropy ΔS and the expectation value of the modu Hamiltonian ΔH. We evaluate relative entropy between the vacuum and other states for spherical regions in the AdS/CFT framework. We check that the relevant equations and inequalities hold for a large class of states, giving a strong support to the holographic entropy formula. We elaborate on potential uses of the equation ΔS=ΔH for vacuum state tomography and obtain modified versions of the Bekenstein bound. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/26679 Blanco, David Daniel; Casini, Horacio German; Localization of negative energy and the Bekenstein bound; American Physical Society; Physical Review Letters; 111; 22; 11-2013; 1-5; 221601 0031-9007 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/26679 |
identifier_str_mv |
Blanco, David Daniel; Casini, Horacio German; Localization of negative energy and the Bekenstein bound; American Physical Society; Physical Review Letters; 111; 22; 11-2013; 1-5; 221601 0031-9007 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.111.221601 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.221601 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1309.1121 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782251477499904 |
score |
12.982451 |