Entropy on a null surface for interacting quantum field theories and the Bousso bound

Autores
Bousso, Raphael; Casini, Horacio German; Fisher, Zacharias; Maldacena, Juan
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the vacuum-subtracted von Neumann entropy of a segment on a null plane. We argue that for interacting quantum field theories in more than two dimensions, this entropy has a simple expression in terms of the expectation value of the null components of the stress tensor on the null interval. More explicitly ∆S is given by a theory-dependent function. This function is constrained by general properties of quantum relative entropy. These constraints are enough to extend our recent free field proof of the quantum Bousso bound to the interacting case. This unusual expression for the entropy as the expectation value of an operator implies that the entropy is equal to the modular Hamiltonian, ∆S = h∆Ki, where K is the operator in the right hand side. We explain how this equality is compatible with a non-zero value for ∆S. Finally, we also compute explicitly the function g(x+) for theories that have a gravity dual.
Fil: Bousso, Raphael. University Of California Berkeley; Estados Unidos. Lawrence Berkeley National Laboratory; Estados Unidos
Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Institute for Advanced Study, Princeton; Estados Unidos
Fil: Fisher, Zacharias. University Of California Berkeley; Estados Unidos. Lawrence Berkeley National Laboratory; Estados Unidos
Fil: Maldacena, Juan. University of Princeton; Estados Unidos
Materia
Entanglement Entropy
Null Surfaces
Bausso Bound
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/3486

id CONICETDig_5ba3c179007f2e3817178fa530cdedda
oai_identifier_str oai:ri.conicet.gov.ar:11336/3486
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Entropy on a null surface for interacting quantum field theories and the Bousso boundBousso, RaphaelCasini, Horacio GermanFisher, ZachariasMaldacena, JuanEntanglement EntropyNull SurfacesBausso Boundhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the vacuum-subtracted von Neumann entropy of a segment on a null plane. We argue that for interacting quantum field theories in more than two dimensions, this entropy has a simple expression in terms of the expectation value of the null components of the stress tensor on the null interval. More explicitly ∆S is given by a theory-dependent function. This function is constrained by general properties of quantum relative entropy. These constraints are enough to extend our recent free field proof of the quantum Bousso bound to the interacting case. This unusual expression for the entropy as the expectation value of an operator implies that the entropy is equal to the modular Hamiltonian, ∆S = h∆Ki, where K is the operator in the right hand side. We explain how this equality is compatible with a non-zero value for ∆S. Finally, we also compute explicitly the function g(x+) for theories that have a gravity dual.Fil: Bousso, Raphael. University Of California Berkeley; Estados Unidos. Lawrence Berkeley National Laboratory; Estados UnidosFil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Institute for Advanced Study, Princeton; Estados UnidosFil: Fisher, Zacharias. University Of California Berkeley; Estados Unidos. Lawrence Berkeley National Laboratory; Estados UnidosFil: Maldacena, Juan. University of Princeton; Estados UnidosAmerican Physical Society2015-04-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3486Bousso, Raphael; Casini, Horacio German; Fisher, Zacharias; Maldacena, Juan; Entropy on a null surface for interacting quantum field theories and the Bousso bound; American Physical Society; Physical Review D: Particles, Fields, Gravitation And Cosmology; 91; 8; 15-4-2015; 1-351550-7998enginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.084030info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1406.4545info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.91.084030info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:07Zoai:ri.conicet.gov.ar:11336/3486instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:08.102CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Entropy on a null surface for interacting quantum field theories and the Bousso bound
title Entropy on a null surface for interacting quantum field theories and the Bousso bound
spellingShingle Entropy on a null surface for interacting quantum field theories and the Bousso bound
Bousso, Raphael
Entanglement Entropy
Null Surfaces
Bausso Bound
title_short Entropy on a null surface for interacting quantum field theories and the Bousso bound
title_full Entropy on a null surface for interacting quantum field theories and the Bousso bound
title_fullStr Entropy on a null surface for interacting quantum field theories and the Bousso bound
title_full_unstemmed Entropy on a null surface for interacting quantum field theories and the Bousso bound
title_sort Entropy on a null surface for interacting quantum field theories and the Bousso bound
dc.creator.none.fl_str_mv Bousso, Raphael
Casini, Horacio German
Fisher, Zacharias
Maldacena, Juan
author Bousso, Raphael
author_facet Bousso, Raphael
Casini, Horacio German
Fisher, Zacharias
Maldacena, Juan
author_role author
author2 Casini, Horacio German
Fisher, Zacharias
Maldacena, Juan
author2_role author
author
author
dc.subject.none.fl_str_mv Entanglement Entropy
Null Surfaces
Bausso Bound
topic Entanglement Entropy
Null Surfaces
Bausso Bound
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the vacuum-subtracted von Neumann entropy of a segment on a null plane. We argue that for interacting quantum field theories in more than two dimensions, this entropy has a simple expression in terms of the expectation value of the null components of the stress tensor on the null interval. More explicitly ∆S is given by a theory-dependent function. This function is constrained by general properties of quantum relative entropy. These constraints are enough to extend our recent free field proof of the quantum Bousso bound to the interacting case. This unusual expression for the entropy as the expectation value of an operator implies that the entropy is equal to the modular Hamiltonian, ∆S = h∆Ki, where K is the operator in the right hand side. We explain how this equality is compatible with a non-zero value for ∆S. Finally, we also compute explicitly the function g(x+) for theories that have a gravity dual.
Fil: Bousso, Raphael. University Of California Berkeley; Estados Unidos. Lawrence Berkeley National Laboratory; Estados Unidos
Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Institute for Advanced Study, Princeton; Estados Unidos
Fil: Fisher, Zacharias. University Of California Berkeley; Estados Unidos. Lawrence Berkeley National Laboratory; Estados Unidos
Fil: Maldacena, Juan. University of Princeton; Estados Unidos
description We study the vacuum-subtracted von Neumann entropy of a segment on a null plane. We argue that for interacting quantum field theories in more than two dimensions, this entropy has a simple expression in terms of the expectation value of the null components of the stress tensor on the null interval. More explicitly ∆S is given by a theory-dependent function. This function is constrained by general properties of quantum relative entropy. These constraints are enough to extend our recent free field proof of the quantum Bousso bound to the interacting case. This unusual expression for the entropy as the expectation value of an operator implies that the entropy is equal to the modular Hamiltonian, ∆S = h∆Ki, where K is the operator in the right hand side. We explain how this equality is compatible with a non-zero value for ∆S. Finally, we also compute explicitly the function g(x+) for theories that have a gravity dual.
publishDate 2015
dc.date.none.fl_str_mv 2015-04-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/3486
Bousso, Raphael; Casini, Horacio German; Fisher, Zacharias; Maldacena, Juan; Entropy on a null surface for interacting quantum field theories and the Bousso bound; American Physical Society; Physical Review D: Particles, Fields, Gravitation And Cosmology; 91; 8; 15-4-2015; 1-35
1550-7998
url http://hdl.handle.net/11336/3486
identifier_str_mv Bousso, Raphael; Casini, Horacio German; Fisher, Zacharias; Maldacena, Juan; Entropy on a null surface for interacting quantum field theories and the Bousso bound; American Physical Society; Physical Review D: Particles, Fields, Gravitation And Cosmology; 91; 8; 15-4-2015; 1-35
1550-7998
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.084030
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1406.4545
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.91.084030
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614334215356416
score 13.070432