Entropy on a null surface for interacting quantum field theories and the Bousso bound
- Autores
- Bousso, Raphael; Casini, Horacio German; Fisher, Zacharias; Maldacena, Juan
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the vacuum-subtracted von Neumann entropy of a segment on a null plane. We argue that for interacting quantum field theories in more than two dimensions, this entropy has a simple expression in terms of the expectation value of the null components of the stress tensor on the null interval. More explicitly ∆S is given by a theory-dependent function. This function is constrained by general properties of quantum relative entropy. These constraints are enough to extend our recent free field proof of the quantum Bousso bound to the interacting case. This unusual expression for the entropy as the expectation value of an operator implies that the entropy is equal to the modular Hamiltonian, ∆S = h∆Ki, where K is the operator in the right hand side. We explain how this equality is compatible with a non-zero value for ∆S. Finally, we also compute explicitly the function g(x+) for theories that have a gravity dual.
Fil: Bousso, Raphael. University Of California Berkeley; Estados Unidos. Lawrence Berkeley National Laboratory; Estados Unidos
Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Institute for Advanced Study, Princeton; Estados Unidos
Fil: Fisher, Zacharias. University Of California Berkeley; Estados Unidos. Lawrence Berkeley National Laboratory; Estados Unidos
Fil: Maldacena, Juan. University of Princeton; Estados Unidos - Materia
-
Entanglement Entropy
Null Surfaces
Bausso Bound - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/3486
Ver los metadatos del registro completo
id |
CONICETDig_5ba3c179007f2e3817178fa530cdedda |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/3486 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Entropy on a null surface for interacting quantum field theories and the Bousso boundBousso, RaphaelCasini, Horacio GermanFisher, ZachariasMaldacena, JuanEntanglement EntropyNull SurfacesBausso Boundhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the vacuum-subtracted von Neumann entropy of a segment on a null plane. We argue that for interacting quantum field theories in more than two dimensions, this entropy has a simple expression in terms of the expectation value of the null components of the stress tensor on the null interval. More explicitly ∆S is given by a theory-dependent function. This function is constrained by general properties of quantum relative entropy. These constraints are enough to extend our recent free field proof of the quantum Bousso bound to the interacting case. This unusual expression for the entropy as the expectation value of an operator implies that the entropy is equal to the modular Hamiltonian, ∆S = h∆Ki, where K is the operator in the right hand side. We explain how this equality is compatible with a non-zero value for ∆S. Finally, we also compute explicitly the function g(x+) for theories that have a gravity dual.Fil: Bousso, Raphael. University Of California Berkeley; Estados Unidos. Lawrence Berkeley National Laboratory; Estados UnidosFil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Institute for Advanced Study, Princeton; Estados UnidosFil: Fisher, Zacharias. University Of California Berkeley; Estados Unidos. Lawrence Berkeley National Laboratory; Estados UnidosFil: Maldacena, Juan. University of Princeton; Estados UnidosAmerican Physical Society2015-04-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3486Bousso, Raphael; Casini, Horacio German; Fisher, Zacharias; Maldacena, Juan; Entropy on a null surface for interacting quantum field theories and the Bousso bound; American Physical Society; Physical Review D: Particles, Fields, Gravitation And Cosmology; 91; 8; 15-4-2015; 1-351550-7998enginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.084030info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1406.4545info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.91.084030info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:07Zoai:ri.conicet.gov.ar:11336/3486instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:08.102CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Entropy on a null surface for interacting quantum field theories and the Bousso bound |
title |
Entropy on a null surface for interacting quantum field theories and the Bousso bound |
spellingShingle |
Entropy on a null surface for interacting quantum field theories and the Bousso bound Bousso, Raphael Entanglement Entropy Null Surfaces Bausso Bound |
title_short |
Entropy on a null surface for interacting quantum field theories and the Bousso bound |
title_full |
Entropy on a null surface for interacting quantum field theories and the Bousso bound |
title_fullStr |
Entropy on a null surface for interacting quantum field theories and the Bousso bound |
title_full_unstemmed |
Entropy on a null surface for interacting quantum field theories and the Bousso bound |
title_sort |
Entropy on a null surface for interacting quantum field theories and the Bousso bound |
dc.creator.none.fl_str_mv |
Bousso, Raphael Casini, Horacio German Fisher, Zacharias Maldacena, Juan |
author |
Bousso, Raphael |
author_facet |
Bousso, Raphael Casini, Horacio German Fisher, Zacharias Maldacena, Juan |
author_role |
author |
author2 |
Casini, Horacio German Fisher, Zacharias Maldacena, Juan |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Entanglement Entropy Null Surfaces Bausso Bound |
topic |
Entanglement Entropy Null Surfaces Bausso Bound |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the vacuum-subtracted von Neumann entropy of a segment on a null plane. We argue that for interacting quantum field theories in more than two dimensions, this entropy has a simple expression in terms of the expectation value of the null components of the stress tensor on the null interval. More explicitly ∆S is given by a theory-dependent function. This function is constrained by general properties of quantum relative entropy. These constraints are enough to extend our recent free field proof of the quantum Bousso bound to the interacting case. This unusual expression for the entropy as the expectation value of an operator implies that the entropy is equal to the modular Hamiltonian, ∆S = h∆Ki, where K is the operator in the right hand side. We explain how this equality is compatible with a non-zero value for ∆S. Finally, we also compute explicitly the function g(x+) for theories that have a gravity dual. Fil: Bousso, Raphael. University Of California Berkeley; Estados Unidos. Lawrence Berkeley National Laboratory; Estados Unidos Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Institute for Advanced Study, Princeton; Estados Unidos Fil: Fisher, Zacharias. University Of California Berkeley; Estados Unidos. Lawrence Berkeley National Laboratory; Estados Unidos Fil: Maldacena, Juan. University of Princeton; Estados Unidos |
description |
We study the vacuum-subtracted von Neumann entropy of a segment on a null plane. We argue that for interacting quantum field theories in more than two dimensions, this entropy has a simple expression in terms of the expectation value of the null components of the stress tensor on the null interval. More explicitly ∆S is given by a theory-dependent function. This function is constrained by general properties of quantum relative entropy. These constraints are enough to extend our recent free field proof of the quantum Bousso bound to the interacting case. This unusual expression for the entropy as the expectation value of an operator implies that the entropy is equal to the modular Hamiltonian, ∆S = h∆Ki, where K is the operator in the right hand side. We explain how this equality is compatible with a non-zero value for ∆S. Finally, we also compute explicitly the function g(x+) for theories that have a gravity dual. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/3486 Bousso, Raphael; Casini, Horacio German; Fisher, Zacharias; Maldacena, Juan; Entropy on a null surface for interacting quantum field theories and the Bousso bound; American Physical Society; Physical Review D: Particles, Fields, Gravitation And Cosmology; 91; 8; 15-4-2015; 1-35 1550-7998 |
url |
http://hdl.handle.net/11336/3486 |
identifier_str_mv |
Bousso, Raphael; Casini, Horacio German; Fisher, Zacharias; Maldacena, Juan; Entropy on a null surface for interacting quantum field theories and the Bousso bound; American Physical Society; Physical Review D: Particles, Fields, Gravitation And Cosmology; 91; 8; 15-4-2015; 1-35 1550-7998 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.084030 info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1406.4545 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.91.084030 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614334215356416 |
score |
13.070432 |