Proof of a Quantum Bousso Bound

Autores
Bousso, Raphael; Casini, Horacio German; Fisher, Zachary; Maldacena, Juan Martin
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove the generalized Covariant Entropy Bound, ∆S ≤ (A−A0 )/4G~, for light-sheets with initial area A and final area A0 . The entropy ∆S is defined as a difference of von Neumann entropies of an arbitrary state and the vacuum, with both states restricted to the light-sheet under consideration. The proof applies to free fields, in the limit where gravitational backreaction is small. We do not assume the null energy condition. In regions where it is violated, we find that the bound is protected by the defining property of light-sheets: that their null generators are nowhere expanding.
Fil: Bousso, Raphael. Lawrence Berkeley National Laboratory; Estados Unidos. University of California at Berkeley; Estados Unidos
Fil: Casini, Horacio German. University of Princeton; Estados Unidos. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Fisher, Zachary. Lawrence Berkeley National Laboratory; Estados Unidos. University of California at Berkeley; Estados Unidos
Fil: Maldacena, Juan Martin. University of Princeton; Estados Unidos
Materia
Entanglement entropy
Entropy bounds
Bousso bound
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/32771

id CONICETDig_0120052bb9cd0a337e1b65d3eb3cbe8b
oai_identifier_str oai:ri.conicet.gov.ar:11336/32771
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Proof of a Quantum Bousso BoundBousso, RaphaelCasini, Horacio GermanFisher, ZacharyMaldacena, Juan MartinEntanglement entropyEntropy boundsBousso boundhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We prove the generalized Covariant Entropy Bound, ∆S ≤ (A−A0 )/4G~, for light-sheets with initial area A and final area A0 . The entropy ∆S is defined as a difference of von Neumann entropies of an arbitrary state and the vacuum, with both states restricted to the light-sheet under consideration. The proof applies to free fields, in the limit where gravitational backreaction is small. We do not assume the null energy condition. In regions where it is violated, we find that the bound is protected by the defining property of light-sheets: that their null generators are nowhere expanding.Fil: Bousso, Raphael. Lawrence Berkeley National Laboratory; Estados Unidos. University of California at Berkeley; Estados UnidosFil: Casini, Horacio German. University of Princeton; Estados Unidos. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fisher, Zachary. Lawrence Berkeley National Laboratory; Estados Unidos. University of California at Berkeley; Estados UnidosFil: Maldacena, Juan Martin. University of Princeton; Estados UnidosAmerican Physical Society2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32771Fisher, Zachary; Casini, Horacio German; Bousso, Raphael; Maldacena, Juan Martin; Proof of a Quantum Bousso Bound; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 90; 4; 8-2014; 1-20; 0440021550-7998CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.90.044002info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.044002info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1404.5635info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:26Zoai:ri.conicet.gov.ar:11336/32771instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:26.318CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Proof of a Quantum Bousso Bound
title Proof of a Quantum Bousso Bound
spellingShingle Proof of a Quantum Bousso Bound
Bousso, Raphael
Entanglement entropy
Entropy bounds
Bousso bound
title_short Proof of a Quantum Bousso Bound
title_full Proof of a Quantum Bousso Bound
title_fullStr Proof of a Quantum Bousso Bound
title_full_unstemmed Proof of a Quantum Bousso Bound
title_sort Proof of a Quantum Bousso Bound
dc.creator.none.fl_str_mv Bousso, Raphael
Casini, Horacio German
Fisher, Zachary
Maldacena, Juan Martin
author Bousso, Raphael
author_facet Bousso, Raphael
Casini, Horacio German
Fisher, Zachary
Maldacena, Juan Martin
author_role author
author2 Casini, Horacio German
Fisher, Zachary
Maldacena, Juan Martin
author2_role author
author
author
dc.subject.none.fl_str_mv Entanglement entropy
Entropy bounds
Bousso bound
topic Entanglement entropy
Entropy bounds
Bousso bound
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove the generalized Covariant Entropy Bound, ∆S ≤ (A−A0 )/4G~, for light-sheets with initial area A and final area A0 . The entropy ∆S is defined as a difference of von Neumann entropies of an arbitrary state and the vacuum, with both states restricted to the light-sheet under consideration. The proof applies to free fields, in the limit where gravitational backreaction is small. We do not assume the null energy condition. In regions where it is violated, we find that the bound is protected by the defining property of light-sheets: that their null generators are nowhere expanding.
Fil: Bousso, Raphael. Lawrence Berkeley National Laboratory; Estados Unidos. University of California at Berkeley; Estados Unidos
Fil: Casini, Horacio German. University of Princeton; Estados Unidos. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Fisher, Zachary. Lawrence Berkeley National Laboratory; Estados Unidos. University of California at Berkeley; Estados Unidos
Fil: Maldacena, Juan Martin. University of Princeton; Estados Unidos
description We prove the generalized Covariant Entropy Bound, ∆S ≤ (A−A0 )/4G~, for light-sheets with initial area A and final area A0 . The entropy ∆S is defined as a difference of von Neumann entropies of an arbitrary state and the vacuum, with both states restricted to the light-sheet under consideration. The proof applies to free fields, in the limit where gravitational backreaction is small. We do not assume the null energy condition. In regions where it is violated, we find that the bound is protected by the defining property of light-sheets: that their null generators are nowhere expanding.
publishDate 2014
dc.date.none.fl_str_mv 2014-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/32771
Fisher, Zachary; Casini, Horacio German; Bousso, Raphael; Maldacena, Juan Martin; Proof of a Quantum Bousso Bound; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 90; 4; 8-2014; 1-20; 044002
1550-7998
CONICET Digital
CONICET
url http://hdl.handle.net/11336/32771
identifier_str_mv Fisher, Zachary; Casini, Horacio German; Bousso, Raphael; Maldacena, Juan Martin; Proof of a Quantum Bousso Bound; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 90; 4; 8-2014; 1-20; 044002
1550-7998
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.90.044002
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.044002
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1404.5635
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613065870409728
score 13.070432