Relative entropy and holography
- Autores
- Blanco, David Daniel; Casini, Horacio German; Lin Yang, Hung; Myers, Robert C.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Relative entropy between two states in the same Hilbert space is a fundamental statistical measure of the distance between these states. Relative entropy is always positive and increasing with the system size. Interestingly, for two states which are infinitesimally different to each other, vanishing of relative entropy gives a powerful equation ΔS=ΔH for the first order variation of the entanglement entropy ΔS and the expectation value of the modu Hamiltonian ΔH. We evaluate relative entropy between the vacuum and other states for spherical regions in the AdS/CFT framework. We check that the relevant equations and inequalities hold for a large class of states, giving a strong support to the holographic entropy formula. We elaborate on potential uses of the equation ΔS=ΔH for vacuum state tomography and obtain modified versions of the Bekenstein bound.
Fil: Blanco, David Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lin Yang, Hung. Harvard University; Estados Unidos
Fil: Myers, Robert C.. Perimeter Institute for Theoretical Physics; Canadá - Materia
-
Relative
Entropy
Holography
Bekenstein - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/21857
Ver los metadatos del registro completo
id |
CONICETDig_5c46361b5e757a15d4039b0bba9386f0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/21857 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Relative entropy and holographyBlanco, David DanielCasini, Horacio GermanLin Yang, HungMyers, Robert C.RelativeEntropyHolographyBekensteinhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Relative entropy between two states in the same Hilbert space is a fundamental statistical measure of the distance between these states. Relative entropy is always positive and increasing with the system size. Interestingly, for two states which are infinitesimally different to each other, vanishing of relative entropy gives a powerful equation ΔS=ΔH for the first order variation of the entanglement entropy ΔS and the expectation value of the modu Hamiltonian ΔH. We evaluate relative entropy between the vacuum and other states for spherical regions in the AdS/CFT framework. We check that the relevant equations and inequalities hold for a large class of states, giving a strong support to the holographic entropy formula. We elaborate on potential uses of the equation ΔS=ΔH for vacuum state tomography and obtain modified versions of the Bekenstein bound.Fil: Blanco, David Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lin Yang, Hung. Harvard University; Estados UnidosFil: Myers, Robert C.. Perimeter Institute for Theoretical Physics; CanadáSpringer2013-08-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21857Blanco, David Daniel; Casini, Horacio German; Lin Yang, Hung; Myers, Robert C.; Relative entropy and holography; Springer; Journal of High Energy Physics; 1308; 60; 12-8-2013; 1-751029-8479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP08(2013)060info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP08(2013)060info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1305.3182info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:17:22Zoai:ri.conicet.gov.ar:11336/21857instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:17:22.853CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Relative entropy and holography |
title |
Relative entropy and holography |
spellingShingle |
Relative entropy and holography Blanco, David Daniel Relative Entropy Holography Bekenstein |
title_short |
Relative entropy and holography |
title_full |
Relative entropy and holography |
title_fullStr |
Relative entropy and holography |
title_full_unstemmed |
Relative entropy and holography |
title_sort |
Relative entropy and holography |
dc.creator.none.fl_str_mv |
Blanco, David Daniel Casini, Horacio German Lin Yang, Hung Myers, Robert C. |
author |
Blanco, David Daniel |
author_facet |
Blanco, David Daniel Casini, Horacio German Lin Yang, Hung Myers, Robert C. |
author_role |
author |
author2 |
Casini, Horacio German Lin Yang, Hung Myers, Robert C. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Relative Entropy Holography Bekenstein |
topic |
Relative Entropy Holography Bekenstein |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Relative entropy between two states in the same Hilbert space is a fundamental statistical measure of the distance between these states. Relative entropy is always positive and increasing with the system size. Interestingly, for two states which are infinitesimally different to each other, vanishing of relative entropy gives a powerful equation ΔS=ΔH for the first order variation of the entanglement entropy ΔS and the expectation value of the modu Hamiltonian ΔH. We evaluate relative entropy between the vacuum and other states for spherical regions in the AdS/CFT framework. We check that the relevant equations and inequalities hold for a large class of states, giving a strong support to the holographic entropy formula. We elaborate on potential uses of the equation ΔS=ΔH for vacuum state tomography and obtain modified versions of the Bekenstein bound. Fil: Blanco, David Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lin Yang, Hung. Harvard University; Estados Unidos Fil: Myers, Robert C.. Perimeter Institute for Theoretical Physics; Canadá |
description |
Relative entropy between two states in the same Hilbert space is a fundamental statistical measure of the distance between these states. Relative entropy is always positive and increasing with the system size. Interestingly, for two states which are infinitesimally different to each other, vanishing of relative entropy gives a powerful equation ΔS=ΔH for the first order variation of the entanglement entropy ΔS and the expectation value of the modu Hamiltonian ΔH. We evaluate relative entropy between the vacuum and other states for spherical regions in the AdS/CFT framework. We check that the relevant equations and inequalities hold for a large class of states, giving a strong support to the holographic entropy formula. We elaborate on potential uses of the equation ΔS=ΔH for vacuum state tomography and obtain modified versions of the Bekenstein bound. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-08-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/21857 Blanco, David Daniel; Casini, Horacio German; Lin Yang, Hung; Myers, Robert C.; Relative entropy and holography; Springer; Journal of High Energy Physics; 1308; 60; 12-8-2013; 1-75 1029-8479 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/21857 |
identifier_str_mv |
Blanco, David Daniel; Casini, Horacio German; Lin Yang, Hung; Myers, Robert C.; Relative entropy and holography; Springer; Journal of High Energy Physics; 1308; 60; 12-8-2013; 1-75 1029-8479 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP08(2013)060 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP08(2013)060 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1305.3182 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980951115694080 |
score |
12.993085 |