Relative entropy and holography

Autores
Blanco, David Daniel; Casini, Horacio German; Lin Yang, Hung; Myers, Robert C.
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Relative entropy between two states in the same Hilbert space is a fundamental statistical measure of the distance between these states. Relative entropy is always positive and increasing with the system size. Interestingly, for two states which are infinitesimally different to each other, vanishing of relative entropy gives a powerful equation ΔS=ΔH for the first order variation of the entanglement entropy ΔS and the expectation value of the modu Hamiltonian ΔH. We evaluate relative entropy between the vacuum and other states for spherical regions in the AdS/CFT framework. We check that the relevant equations and inequalities hold for a large class of states, giving a strong support to the holographic entropy formula. We elaborate on potential uses of the equation ΔS=ΔH for vacuum state tomography and obtain modified versions of the Bekenstein bound.
Fil: Blanco, David Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lin Yang, Hung. Harvard University; Estados Unidos
Fil: Myers, Robert C.. Perimeter Institute for Theoretical Physics; Canadá
Materia
Relative
Entropy
Holography
Bekenstein
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/21857

id CONICETDig_5c46361b5e757a15d4039b0bba9386f0
oai_identifier_str oai:ri.conicet.gov.ar:11336/21857
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Relative entropy and holographyBlanco, David DanielCasini, Horacio GermanLin Yang, HungMyers, Robert C.RelativeEntropyHolographyBekensteinhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Relative entropy between two states in the same Hilbert space is a fundamental statistical measure of the distance between these states. Relative entropy is always positive and increasing with the system size. Interestingly, for two states which are infinitesimally different to each other, vanishing of relative entropy gives a powerful equation ΔS=ΔH for the first order variation of the entanglement entropy ΔS and the expectation value of the modu Hamiltonian ΔH. We evaluate relative entropy between the vacuum and other states for spherical regions in the AdS/CFT framework. We check that the relevant equations and inequalities hold for a large class of states, giving a strong support to the holographic entropy formula. We elaborate on potential uses of the equation ΔS=ΔH for vacuum state tomography and obtain modified versions of the Bekenstein bound.Fil: Blanco, David Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lin Yang, Hung. Harvard University; Estados UnidosFil: Myers, Robert C.. Perimeter Institute for Theoretical Physics; CanadáSpringer2013-08-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21857Blanco, David Daniel; Casini, Horacio German; Lin Yang, Hung; Myers, Robert C.; Relative entropy and holography; Springer; Journal of High Energy Physics; 1308; 60; 12-8-2013; 1-751029-8479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP08(2013)060info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP08(2013)060info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1305.3182info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:17:22Zoai:ri.conicet.gov.ar:11336/21857instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:17:22.853CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Relative entropy and holography
title Relative entropy and holography
spellingShingle Relative entropy and holography
Blanco, David Daniel
Relative
Entropy
Holography
Bekenstein
title_short Relative entropy and holography
title_full Relative entropy and holography
title_fullStr Relative entropy and holography
title_full_unstemmed Relative entropy and holography
title_sort Relative entropy and holography
dc.creator.none.fl_str_mv Blanco, David Daniel
Casini, Horacio German
Lin Yang, Hung
Myers, Robert C.
author Blanco, David Daniel
author_facet Blanco, David Daniel
Casini, Horacio German
Lin Yang, Hung
Myers, Robert C.
author_role author
author2 Casini, Horacio German
Lin Yang, Hung
Myers, Robert C.
author2_role author
author
author
dc.subject.none.fl_str_mv Relative
Entropy
Holography
Bekenstein
topic Relative
Entropy
Holography
Bekenstein
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Relative entropy between two states in the same Hilbert space is a fundamental statistical measure of the distance between these states. Relative entropy is always positive and increasing with the system size. Interestingly, for two states which are infinitesimally different to each other, vanishing of relative entropy gives a powerful equation ΔS=ΔH for the first order variation of the entanglement entropy ΔS and the expectation value of the modu Hamiltonian ΔH. We evaluate relative entropy between the vacuum and other states for spherical regions in the AdS/CFT framework. We check that the relevant equations and inequalities hold for a large class of states, giving a strong support to the holographic entropy formula. We elaborate on potential uses of the equation ΔS=ΔH for vacuum state tomography and obtain modified versions of the Bekenstein bound.
Fil: Blanco, David Daniel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lin Yang, Hung. Harvard University; Estados Unidos
Fil: Myers, Robert C.. Perimeter Institute for Theoretical Physics; Canadá
description Relative entropy between two states in the same Hilbert space is a fundamental statistical measure of the distance between these states. Relative entropy is always positive and increasing with the system size. Interestingly, for two states which are infinitesimally different to each other, vanishing of relative entropy gives a powerful equation ΔS=ΔH for the first order variation of the entanglement entropy ΔS and the expectation value of the modu Hamiltonian ΔH. We evaluate relative entropy between the vacuum and other states for spherical regions in the AdS/CFT framework. We check that the relevant equations and inequalities hold for a large class of states, giving a strong support to the holographic entropy formula. We elaborate on potential uses of the equation ΔS=ΔH for vacuum state tomography and obtain modified versions of the Bekenstein bound.
publishDate 2013
dc.date.none.fl_str_mv 2013-08-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/21857
Blanco, David Daniel; Casini, Horacio German; Lin Yang, Hung; Myers, Robert C.; Relative entropy and holography; Springer; Journal of High Energy Physics; 1308; 60; 12-8-2013; 1-75
1029-8479
CONICET Digital
CONICET
url http://hdl.handle.net/11336/21857
identifier_str_mv Blanco, David Daniel; Casini, Horacio German; Lin Yang, Hung; Myers, Robert C.; Relative entropy and holography; Springer; Journal of High Energy Physics; 1308; 60; 12-8-2013; 1-75
1029-8479
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP08(2013)060
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP08(2013)060
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1305.3182
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980951115694080
score 12.993085