Afem for the Laplace-Beltrami operator on graphs: Design and conditional contraction property
- Autores
- Mekchay, Khamron; Morin, Pedro; Nochetto, Ricardo Horacio
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present an adaptive finite element method (AFEM) of any polynomial degree for the Laplace-Beltrami operator on C1 graphs Γ in R{double-struck}d (d ≥ 2). We first derive residual-type a posteriori error estimates that account for the interaction of both the energy error in H1(Γ) and the surface error in W∞1 (Γ) due to approximation of Γ. We devise a marking strategy to reduce the total error estimator, namely a suitably scaled sum of the energy, geometric, and inconsistency error estimators. We prove a conditional contraction property for the sum of the energy error and the total estimator; the conditional statement encodes resolution of Γ in W∞1. We conclude with one numerical experiment that illustrates the theory.
Fil: Mekchay, Khamron. University of Maryland; Estados Unidos
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unidos - Materia
-
A Posteriori Error Estimate
Adaptive Finite Element Method
Bisection
Contraction
Energy And Geometric Errors
Graphs
Laplace-Beltrami Operator - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/75180
Ver los metadatos del registro completo
| id |
CONICETDig_58f1bfed14cbede71705d4bca053ddb5 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/75180 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Afem for the Laplace-Beltrami operator on graphs: Design and conditional contraction propertyMekchay, KhamronMorin, PedroNochetto, Ricardo HoracioA Posteriori Error EstimateAdaptive Finite Element MethodBisectionContractionEnergy And Geometric ErrorsGraphsLaplace-Beltrami Operatorhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present an adaptive finite element method (AFEM) of any polynomial degree for the Laplace-Beltrami operator on C1 graphs Γ in R{double-struck}d (d ≥ 2). We first derive residual-type a posteriori error estimates that account for the interaction of both the energy error in H1(Γ) and the surface error in W∞1 (Γ) due to approximation of Γ. We devise a marking strategy to reduce the total error estimator, namely a suitably scaled sum of the energy, geometric, and inconsistency error estimators. We prove a conditional contraction property for the sum of the energy error and the total estimator; the conditional statement encodes resolution of Γ in W∞1. We conclude with one numerical experiment that illustrates the theory.Fil: Mekchay, Khamron. University of Maryland; Estados UnidosFil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Nochetto, Ricardo Horacio. University of Maryland; Estados UnidosAmerican Mathematical Society2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/75180Mekchay, Khamron; Morin, Pedro; Nochetto, Ricardo Horacio; Afem for the Laplace-Beltrami operator on graphs: Design and conditional contraction property; American Mathematical Society; Mathematics Of Computation; 80; 274; 1-2011; 625-6480025-5718CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1090/S0025-5718-2010-02435-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:02:30Zoai:ri.conicet.gov.ar:11336/75180instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:02:30.545CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Afem for the Laplace-Beltrami operator on graphs: Design and conditional contraction property |
| title |
Afem for the Laplace-Beltrami operator on graphs: Design and conditional contraction property |
| spellingShingle |
Afem for the Laplace-Beltrami operator on graphs: Design and conditional contraction property Mekchay, Khamron A Posteriori Error Estimate Adaptive Finite Element Method Bisection Contraction Energy And Geometric Errors Graphs Laplace-Beltrami Operator |
| title_short |
Afem for the Laplace-Beltrami operator on graphs: Design and conditional contraction property |
| title_full |
Afem for the Laplace-Beltrami operator on graphs: Design and conditional contraction property |
| title_fullStr |
Afem for the Laplace-Beltrami operator on graphs: Design and conditional contraction property |
| title_full_unstemmed |
Afem for the Laplace-Beltrami operator on graphs: Design and conditional contraction property |
| title_sort |
Afem for the Laplace-Beltrami operator on graphs: Design and conditional contraction property |
| dc.creator.none.fl_str_mv |
Mekchay, Khamron Morin, Pedro Nochetto, Ricardo Horacio |
| author |
Mekchay, Khamron |
| author_facet |
Mekchay, Khamron Morin, Pedro Nochetto, Ricardo Horacio |
| author_role |
author |
| author2 |
Morin, Pedro Nochetto, Ricardo Horacio |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
A Posteriori Error Estimate Adaptive Finite Element Method Bisection Contraction Energy And Geometric Errors Graphs Laplace-Beltrami Operator |
| topic |
A Posteriori Error Estimate Adaptive Finite Element Method Bisection Contraction Energy And Geometric Errors Graphs Laplace-Beltrami Operator |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We present an adaptive finite element method (AFEM) of any polynomial degree for the Laplace-Beltrami operator on C1 graphs Γ in R{double-struck}d (d ≥ 2). We first derive residual-type a posteriori error estimates that account for the interaction of both the energy error in H1(Γ) and the surface error in W∞1 (Γ) due to approximation of Γ. We devise a marking strategy to reduce the total error estimator, namely a suitably scaled sum of the energy, geometric, and inconsistency error estimators. We prove a conditional contraction property for the sum of the energy error and the total estimator; the conditional statement encodes resolution of Γ in W∞1. We conclude with one numerical experiment that illustrates the theory. Fil: Mekchay, Khamron. University of Maryland; Estados Unidos Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unidos |
| description |
We present an adaptive finite element method (AFEM) of any polynomial degree for the Laplace-Beltrami operator on C1 graphs Γ in R{double-struck}d (d ≥ 2). We first derive residual-type a posteriori error estimates that account for the interaction of both the energy error in H1(Γ) and the surface error in W∞1 (Γ) due to approximation of Γ. We devise a marking strategy to reduce the total error estimator, namely a suitably scaled sum of the energy, geometric, and inconsistency error estimators. We prove a conditional contraction property for the sum of the energy error and the total estimator; the conditional statement encodes resolution of Γ in W∞1. We conclude with one numerical experiment that illustrates the theory. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/75180 Mekchay, Khamron; Morin, Pedro; Nochetto, Ricardo Horacio; Afem for the Laplace-Beltrami operator on graphs: Design and conditional contraction property; American Mathematical Society; Mathematics Of Computation; 80; 274; 1-2011; 625-648 0025-5718 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/75180 |
| identifier_str_mv |
Mekchay, Khamron; Morin, Pedro; Nochetto, Ricardo Horacio; Afem for the Laplace-Beltrami operator on graphs: Design and conditional contraction property; American Mathematical Society; Mathematics Of Computation; 80; 274; 1-2011; 625-648 0025-5718 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1090/S0025-5718-2010-02435-4 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Mathematical Society |
| publisher.none.fl_str_mv |
American Mathematical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782361541279744 |
| score |
12.982451 |