Generalized nonlinear Proca equation and its free-particle solutions

Autores
Nobre, F. D.; Plastino, Angel Ricardo
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We introduce a nonlinear extension of Proca?s field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schrödinger, Dirac, and Klein?Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q→ 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ μ(x→ , t) , involves an additional field Φ μ(x→ , t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E2= p2c2+ m2c4for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed.
Fil: Nobre, F. D.. Centro Brasileiro de Pesquisas Fisicas; Brasil
Fil: Plastino, Angel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina
Materia
Nonlinear Wave Equations
Proca Equation
Soliton-like Solutions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18100

id CONICETDig_6ba0a3cd1d1dd171f57ae4ebbf935b5f
oai_identifier_str oai:ri.conicet.gov.ar:11336/18100
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Generalized nonlinear Proca equation and its free-particle solutionsNobre, F. D.Plastino, Angel RicardoNonlinear Wave EquationsProca EquationSoliton-like Solutionshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We introduce a nonlinear extension of Proca?s field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schrödinger, Dirac, and Klein?Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q→ 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ μ(x→ , t) , involves an additional field Φ μ(x→ , t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E2= p2c2+ m2c4for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed.Fil: Nobre, F. D.. Centro Brasileiro de Pesquisas Fisicas; BrasilFil: Plastino, Angel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; ArgentinaSpringer2016-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18100Nobre, F. D.; Plastino, Angel Ricardo; Generalized nonlinear Proca equation and its free-particle solutions; Springer; European Physical Journal C: Particles and Fields; 76; 6; 6-20161434-6044CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1140/epjc/s10052-016-4196-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:53Zoai:ri.conicet.gov.ar:11336/18100instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:53.83CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Generalized nonlinear Proca equation and its free-particle solutions
title Generalized nonlinear Proca equation and its free-particle solutions
spellingShingle Generalized nonlinear Proca equation and its free-particle solutions
Nobre, F. D.
Nonlinear Wave Equations
Proca Equation
Soliton-like Solutions
title_short Generalized nonlinear Proca equation and its free-particle solutions
title_full Generalized nonlinear Proca equation and its free-particle solutions
title_fullStr Generalized nonlinear Proca equation and its free-particle solutions
title_full_unstemmed Generalized nonlinear Proca equation and its free-particle solutions
title_sort Generalized nonlinear Proca equation and its free-particle solutions
dc.creator.none.fl_str_mv Nobre, F. D.
Plastino, Angel Ricardo
author Nobre, F. D.
author_facet Nobre, F. D.
Plastino, Angel Ricardo
author_role author
author2 Plastino, Angel Ricardo
author2_role author
dc.subject.none.fl_str_mv Nonlinear Wave Equations
Proca Equation
Soliton-like Solutions
topic Nonlinear Wave Equations
Proca Equation
Soliton-like Solutions
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We introduce a nonlinear extension of Proca?s field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schrödinger, Dirac, and Klein?Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q→ 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ μ(x→ , t) , involves an additional field Φ μ(x→ , t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E2= p2c2+ m2c4for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed.
Fil: Nobre, F. D.. Centro Brasileiro de Pesquisas Fisicas; Brasil
Fil: Plastino, Angel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina
description We introduce a nonlinear extension of Proca?s field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schrödinger, Dirac, and Klein?Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q→ 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ μ(x→ , t) , involves an additional field Φ μ(x→ , t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E2= p2c2+ m2c4for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed.
publishDate 2016
dc.date.none.fl_str_mv 2016-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18100
Nobre, F. D.; Plastino, Angel Ricardo; Generalized nonlinear Proca equation and its free-particle solutions; Springer; European Physical Journal C: Particles and Fields; 76; 6; 6-2016
1434-6044
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18100
identifier_str_mv Nobre, F. D.; Plastino, Angel Ricardo; Generalized nonlinear Proca equation and its free-particle solutions; Springer; European Physical Journal C: Particles and Fields; 76; 6; 6-2016
1434-6044
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1140/epjc/s10052-016-4196-4
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613434895761408
score 13.069144