Generalized nonlinear Proca equation and its free-particle solutions
- Autores
- Nobre, F. D.; Plastino, Angel Ricardo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce a nonlinear extension of Proca?s field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schrödinger, Dirac, and Klein?Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q→ 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ μ(x→ , t) , involves an additional field Φ μ(x→ , t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E2= p2c2+ m2c4for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed.
Fil: Nobre, F. D.. Centro Brasileiro de Pesquisas Fisicas; Brasil
Fil: Plastino, Angel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina - Materia
-
Nonlinear Wave Equations
Proca Equation
Soliton-like Solutions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18100
Ver los metadatos del registro completo
id |
CONICETDig_6ba0a3cd1d1dd171f57ae4ebbf935b5f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18100 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Generalized nonlinear Proca equation and its free-particle solutionsNobre, F. D.Plastino, Angel RicardoNonlinear Wave EquationsProca EquationSoliton-like Solutionshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We introduce a nonlinear extension of Proca?s field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schrödinger, Dirac, and Klein?Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q→ 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ μ(x→ , t) , involves an additional field Φ μ(x→ , t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E2= p2c2+ m2c4for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed.Fil: Nobre, F. D.. Centro Brasileiro de Pesquisas Fisicas; BrasilFil: Plastino, Angel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; ArgentinaSpringer2016-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18100Nobre, F. D.; Plastino, Angel Ricardo; Generalized nonlinear Proca equation and its free-particle solutions; Springer; European Physical Journal C: Particles and Fields; 76; 6; 6-20161434-6044CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1140/epjc/s10052-016-4196-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:53Zoai:ri.conicet.gov.ar:11336/18100instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:53.83CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Generalized nonlinear Proca equation and its free-particle solutions |
title |
Generalized nonlinear Proca equation and its free-particle solutions |
spellingShingle |
Generalized nonlinear Proca equation and its free-particle solutions Nobre, F. D. Nonlinear Wave Equations Proca Equation Soliton-like Solutions |
title_short |
Generalized nonlinear Proca equation and its free-particle solutions |
title_full |
Generalized nonlinear Proca equation and its free-particle solutions |
title_fullStr |
Generalized nonlinear Proca equation and its free-particle solutions |
title_full_unstemmed |
Generalized nonlinear Proca equation and its free-particle solutions |
title_sort |
Generalized nonlinear Proca equation and its free-particle solutions |
dc.creator.none.fl_str_mv |
Nobre, F. D. Plastino, Angel Ricardo |
author |
Nobre, F. D. |
author_facet |
Nobre, F. D. Plastino, Angel Ricardo |
author_role |
author |
author2 |
Plastino, Angel Ricardo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Nonlinear Wave Equations Proca Equation Soliton-like Solutions |
topic |
Nonlinear Wave Equations Proca Equation Soliton-like Solutions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce a nonlinear extension of Proca?s field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schrödinger, Dirac, and Klein?Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q→ 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ μ(x→ , t) , involves an additional field Φ μ(x→ , t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E2= p2c2+ m2c4for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed. Fil: Nobre, F. D.. Centro Brasileiro de Pesquisas Fisicas; Brasil Fil: Plastino, Angel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina |
description |
We introduce a nonlinear extension of Proca?s field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schrödinger, Dirac, and Klein?Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q→ 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ μ(x→ , t) , involves an additional field Φ μ(x→ , t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E2= p2c2+ m2c4for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18100 Nobre, F. D.; Plastino, Angel Ricardo; Generalized nonlinear Proca equation and its free-particle solutions; Springer; European Physical Journal C: Particles and Fields; 76; 6; 6-2016 1434-6044 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18100 |
identifier_str_mv |
Nobre, F. D.; Plastino, Angel Ricardo; Generalized nonlinear Proca equation and its free-particle solutions; Springer; European Physical Journal C: Particles and Fields; 76; 6; 6-2016 1434-6044 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1140/epjc/s10052-016-4196-4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613434895761408 |
score |
13.069144 |