Kreĭn space unitary dilations of Hilbert space holomorphic semigroups

Autores
Marcantognini Palacios, Stefania Alma María
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The infinitesimal generator A of a strongly continuous semigroup on a Hilbert space is assumed to satisfy that B_β:=A−β is a sectorial operator of angle less than π/2 for some β≥0. If B_β is dissipative in some equivalent scalar product then the Naimark-Arocena Representation Theorem is applied to obtain a Kreiin space unitary dilation of the semigroup.
Fil: Marcantognini Palacios, Stefania Alma María. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
HILBERT SPACE HOLOMORPHIC SEMIGROUPS
KREIN SPACE UNITARY GROUPS
SECTORIAL OPERATORS
NAIMARK’S REPRESENTATION THEOREM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/251591

id CONICETDig_4c8192769d98c2c746b2345ce778cf01
oai_identifier_str oai:ri.conicet.gov.ar:11336/251591
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Kreĭn space unitary dilations of Hilbert space holomorphic semigroupsMarcantognini Palacios, Stefania Alma MaríaHILBERT SPACE HOLOMORPHIC SEMIGROUPSKREIN SPACE UNITARY GROUPSSECTORIAL OPERATORSNAIMARK’S REPRESENTATION THEOREMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The infinitesimal generator A of a strongly continuous semigroup on a Hilbert space is assumed to satisfy that B_β:=A−β is a sectorial operator of angle less than π/2 for some β≥0. If B_β is dissipative in some equivalent scalar product then the Naimark-Arocena Representation Theorem is applied to obtain a Kreiin space unitary dilation of the semigroup.Fil: Marcantognini Palacios, Stefania Alma María. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaUnión Matemática Argentina2020-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/251591Marcantognini Palacios, Stefania Alma María; Kreĭn space unitary dilations of Hilbert space holomorphic semigroups; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 61; 1; 6-2020; 145-1600041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/pdf/v61n1/v61n1a09.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.v61n1a09info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v61n1a09info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:53:27Zoai:ri.conicet.gov.ar:11336/251591instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:53:28.049CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Kreĭn space unitary dilations of Hilbert space holomorphic semigroups
title Kreĭn space unitary dilations of Hilbert space holomorphic semigroups
spellingShingle Kreĭn space unitary dilations of Hilbert space holomorphic semigroups
Marcantognini Palacios, Stefania Alma María
HILBERT SPACE HOLOMORPHIC SEMIGROUPS
KREIN SPACE UNITARY GROUPS
SECTORIAL OPERATORS
NAIMARK’S REPRESENTATION THEOREM
title_short Kreĭn space unitary dilations of Hilbert space holomorphic semigroups
title_full Kreĭn space unitary dilations of Hilbert space holomorphic semigroups
title_fullStr Kreĭn space unitary dilations of Hilbert space holomorphic semigroups
title_full_unstemmed Kreĭn space unitary dilations of Hilbert space holomorphic semigroups
title_sort Kreĭn space unitary dilations of Hilbert space holomorphic semigroups
dc.creator.none.fl_str_mv Marcantognini Palacios, Stefania Alma María
author Marcantognini Palacios, Stefania Alma María
author_facet Marcantognini Palacios, Stefania Alma María
author_role author
dc.subject.none.fl_str_mv HILBERT SPACE HOLOMORPHIC SEMIGROUPS
KREIN SPACE UNITARY GROUPS
SECTORIAL OPERATORS
NAIMARK’S REPRESENTATION THEOREM
topic HILBERT SPACE HOLOMORPHIC SEMIGROUPS
KREIN SPACE UNITARY GROUPS
SECTORIAL OPERATORS
NAIMARK’S REPRESENTATION THEOREM
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The infinitesimal generator A of a strongly continuous semigroup on a Hilbert space is assumed to satisfy that B_β:=A−β is a sectorial operator of angle less than π/2 for some β≥0. If B_β is dissipative in some equivalent scalar product then the Naimark-Arocena Representation Theorem is applied to obtain a Kreiin space unitary dilation of the semigroup.
Fil: Marcantognini Palacios, Stefania Alma María. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The infinitesimal generator A of a strongly continuous semigroup on a Hilbert space is assumed to satisfy that B_β:=A−β is a sectorial operator of angle less than π/2 for some β≥0. If B_β is dissipative in some equivalent scalar product then the Naimark-Arocena Representation Theorem is applied to obtain a Kreiin space unitary dilation of the semigroup.
publishDate 2020
dc.date.none.fl_str_mv 2020-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/251591
Marcantognini Palacios, Stefania Alma María; Kreĭn space unitary dilations of Hilbert space holomorphic semigroups; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 61; 1; 6-2020; 145-160
0041-6932
1669-9637
CONICET Digital
CONICET
url http://hdl.handle.net/11336/251591
identifier_str_mv Marcantognini Palacios, Stefania Alma María; Kreĭn space unitary dilations of Hilbert space holomorphic semigroups; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 61; 1; 6-2020; 145-160
0041-6932
1669-9637
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/pdf/v61n1/v61n1a09.pdf
info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.v61n1a09
info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v61n1a09
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Unión Matemática Argentina
publisher.none.fl_str_mv Unión Matemática Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613633362886656
score 13.069144