Kreĭn space unitary dilations of Hilbert space holomorphic semigroups
- Autores
- Marcantognini Palacios, Stefania Alma María
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The infinitesimal generator A of a strongly continuous semigroup on a Hilbert space is assumed to satisfy that B_β:=A−β is a sectorial operator of angle less than π/2 for some β≥0. If B_β is dissipative in some equivalent scalar product then the Naimark-Arocena Representation Theorem is applied to obtain a Kreiin space unitary dilation of the semigroup.
Fil: Marcantognini Palacios, Stefania Alma María. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
HILBERT SPACE HOLOMORPHIC SEMIGROUPS
KREIN SPACE UNITARY GROUPS
SECTORIAL OPERATORS
NAIMARK’S REPRESENTATION THEOREM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/251591
Ver los metadatos del registro completo
id |
CONICETDig_4c8192769d98c2c746b2345ce778cf01 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/251591 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Kreĭn space unitary dilations of Hilbert space holomorphic semigroupsMarcantognini Palacios, Stefania Alma MaríaHILBERT SPACE HOLOMORPHIC SEMIGROUPSKREIN SPACE UNITARY GROUPSSECTORIAL OPERATORSNAIMARK’S REPRESENTATION THEOREMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The infinitesimal generator A of a strongly continuous semigroup on a Hilbert space is assumed to satisfy that B_β:=A−β is a sectorial operator of angle less than π/2 for some β≥0. If B_β is dissipative in some equivalent scalar product then the Naimark-Arocena Representation Theorem is applied to obtain a Kreiin space unitary dilation of the semigroup.Fil: Marcantognini Palacios, Stefania Alma María. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaUnión Matemática Argentina2020-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/251591Marcantognini Palacios, Stefania Alma María; Kreĭn space unitary dilations of Hilbert space holomorphic semigroups; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 61; 1; 6-2020; 145-1600041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/pdf/v61n1/v61n1a09.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.v61n1a09info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v61n1a09info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:53:27Zoai:ri.conicet.gov.ar:11336/251591instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:53:28.049CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Kreĭn space unitary dilations of Hilbert space holomorphic semigroups |
title |
Kreĭn space unitary dilations of Hilbert space holomorphic semigroups |
spellingShingle |
Kreĭn space unitary dilations of Hilbert space holomorphic semigroups Marcantognini Palacios, Stefania Alma María HILBERT SPACE HOLOMORPHIC SEMIGROUPS KREIN SPACE UNITARY GROUPS SECTORIAL OPERATORS NAIMARK’S REPRESENTATION THEOREM |
title_short |
Kreĭn space unitary dilations of Hilbert space holomorphic semigroups |
title_full |
Kreĭn space unitary dilations of Hilbert space holomorphic semigroups |
title_fullStr |
Kreĭn space unitary dilations of Hilbert space holomorphic semigroups |
title_full_unstemmed |
Kreĭn space unitary dilations of Hilbert space holomorphic semigroups |
title_sort |
Kreĭn space unitary dilations of Hilbert space holomorphic semigroups |
dc.creator.none.fl_str_mv |
Marcantognini Palacios, Stefania Alma María |
author |
Marcantognini Palacios, Stefania Alma María |
author_facet |
Marcantognini Palacios, Stefania Alma María |
author_role |
author |
dc.subject.none.fl_str_mv |
HILBERT SPACE HOLOMORPHIC SEMIGROUPS KREIN SPACE UNITARY GROUPS SECTORIAL OPERATORS NAIMARK’S REPRESENTATION THEOREM |
topic |
HILBERT SPACE HOLOMORPHIC SEMIGROUPS KREIN SPACE UNITARY GROUPS SECTORIAL OPERATORS NAIMARK’S REPRESENTATION THEOREM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The infinitesimal generator A of a strongly continuous semigroup on a Hilbert space is assumed to satisfy that B_β:=A−β is a sectorial operator of angle less than π/2 for some β≥0. If B_β is dissipative in some equivalent scalar product then the Naimark-Arocena Representation Theorem is applied to obtain a Kreiin space unitary dilation of the semigroup. Fil: Marcantognini Palacios, Stefania Alma María. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The infinitesimal generator A of a strongly continuous semigroup on a Hilbert space is assumed to satisfy that B_β:=A−β is a sectorial operator of angle less than π/2 for some β≥0. If B_β is dissipative in some equivalent scalar product then the Naimark-Arocena Representation Theorem is applied to obtain a Kreiin space unitary dilation of the semigroup. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/251591 Marcantognini Palacios, Stefania Alma María; Kreĭn space unitary dilations of Hilbert space holomorphic semigroups; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 61; 1; 6-2020; 145-160 0041-6932 1669-9637 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/251591 |
identifier_str_mv |
Marcantognini Palacios, Stefania Alma María; Kreĭn space unitary dilations of Hilbert space holomorphic semigroups; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 61; 1; 6-2020; 145-160 0041-6932 1669-9637 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/pdf/v61n1/v61n1a09.pdf info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.v61n1a09 info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v61n1a09 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
publisher.none.fl_str_mv |
Unión Matemática Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613633362886656 |
score |
13.069144 |