A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights
- Autores
- Pinasco, Juan Pablo; Scarola, Cristian
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we study an inverse problem for weighted second order Sturm-Liouville equations. We show that the zeros of any subsequence of eigenfunctions, or a dense set of nodes, are enough to determine the weight. We impose weaker hypotheses for positive weights, and we generalize the proof to include indefinite weights. Moreover, the parameters in the boundary conditions can be determined numerically by using a shooting method.
Fil: Pinasco, Juan Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Scarola, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
PROBLEMAS INVERSOS
AUTOVALORES
PUNTOS NODALES
PESOS INDEFINIDOS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/93862
Ver los metadatos del registro completo
id |
CONICETDig_4c3b2234329d3ce4a258060e1bcea29c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/93862 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A nodal inverse problem for second order Sturm-Liouville operators with indefinite weightsPinasco, Juan PabloScarola, CristianPROBLEMAS INVERSOSAUTOVALORESPUNTOS NODALESPESOS INDEFINIDOShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we study an inverse problem for weighted second order Sturm-Liouville equations. We show that the zeros of any subsequence of eigenfunctions, or a dense set of nodes, are enough to determine the weight. We impose weaker hypotheses for positive weights, and we generalize the proof to include indefinite weights. Moreover, the parameters in the boundary conditions can be determined numerically by using a shooting method.Fil: Pinasco, Juan Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Scarola, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier Science Inc2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93862Pinasco, Juan Pablo; Scarola, Cristian; A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights; Elsevier Science Inc; Applied Mathematics and Computation; 256; 4-2015; 819-8300096-3003CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0096300315001332info:eu-repo/semantics/altIdentifier/doi/10.1016/j.amc.2015.01.101info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:38Zoai:ri.conicet.gov.ar:11336/93862instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:38.778CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights |
title |
A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights |
spellingShingle |
A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights Pinasco, Juan Pablo PROBLEMAS INVERSOS AUTOVALORES PUNTOS NODALES PESOS INDEFINIDOS |
title_short |
A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights |
title_full |
A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights |
title_fullStr |
A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights |
title_full_unstemmed |
A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights |
title_sort |
A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights |
dc.creator.none.fl_str_mv |
Pinasco, Juan Pablo Scarola, Cristian |
author |
Pinasco, Juan Pablo |
author_facet |
Pinasco, Juan Pablo Scarola, Cristian |
author_role |
author |
author2 |
Scarola, Cristian |
author2_role |
author |
dc.subject.none.fl_str_mv |
PROBLEMAS INVERSOS AUTOVALORES PUNTOS NODALES PESOS INDEFINIDOS |
topic |
PROBLEMAS INVERSOS AUTOVALORES PUNTOS NODALES PESOS INDEFINIDOS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we study an inverse problem for weighted second order Sturm-Liouville equations. We show that the zeros of any subsequence of eigenfunctions, or a dense set of nodes, are enough to determine the weight. We impose weaker hypotheses for positive weights, and we generalize the proof to include indefinite weights. Moreover, the parameters in the boundary conditions can be determined numerically by using a shooting method. Fil: Pinasco, Juan Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Scarola, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
In this paper we study an inverse problem for weighted second order Sturm-Liouville equations. We show that the zeros of any subsequence of eigenfunctions, or a dense set of nodes, are enough to determine the weight. We impose weaker hypotheses for positive weights, and we generalize the proof to include indefinite weights. Moreover, the parameters in the boundary conditions can be determined numerically by using a shooting method. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/93862 Pinasco, Juan Pablo; Scarola, Cristian; A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights; Elsevier Science Inc; Applied Mathematics and Computation; 256; 4-2015; 819-830 0096-3003 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/93862 |
identifier_str_mv |
Pinasco, Juan Pablo; Scarola, Cristian; A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights; Elsevier Science Inc; Applied Mathematics and Computation; 256; 4-2015; 819-830 0096-3003 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0096300315001332 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.amc.2015.01.101 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc |
publisher.none.fl_str_mv |
Elsevier Science Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269592620105728 |
score |
13.13397 |