A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line

Autores
Pinasco, Juan Pablo; Scarola, Cristian
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we study an inverse problem for a quasi-linear ordinary differential equation with a monotonic weight in the half-line. First, we find the asymptotic behavior of the singular eigenvalues, and we obtain a Weyl-type asymptotics imposing an appropriate integrability condition on the weight. Then, we investigate the inverse problem of recovering the coefficients from nodal data. We show that any dense subset of nodes of the eigenfunctions is enough to recover the weight.
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Scarola, Cristian. Universidad Nacional de la Pampa. Facultad de Cs.exactas y Naturales. Dto de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Materia
Eigenvalues
Inverse Problems
Nodal Points
P-Laplacian
Singular Problem
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55544

id CONICETDig_f06e6a00c692611546a9b7c8d7edd4b7
oai_identifier_str oai:ri.conicet.gov.ar:11336/55544
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A nodal inverse problem for a quasi-linear ordinary differential equation in the half-linePinasco, Juan PabloScarola, CristianEigenvaluesInverse ProblemsNodal PointsP-LaplacianSingular Problemhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we study an inverse problem for a quasi-linear ordinary differential equation with a monotonic weight in the half-line. First, we find the asymptotic behavior of the singular eigenvalues, and we obtain a Weyl-type asymptotics imposing an appropriate integrability condition on the weight. Then, we investigate the inverse problem of recovering the coefficients from nodal data. We show that any dense subset of nodes of the eigenfunctions is enough to recover the weight.Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Scarola, Cristian. Universidad Nacional de la Pampa. Facultad de Cs.exactas y Naturales. Dto de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaAcademic Press Inc Elsevier Science2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55544Pinasco, Juan Pablo; Scarola, Cristian; A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line; Academic Press Inc Elsevier Science; Journal Of Differential Equations; 261; 2; 7-2016; 1000-10160022-0396CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022039616300018info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jde.2016.03.031info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:06:59Zoai:ri.conicet.gov.ar:11336/55544instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:06:59.287CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line
title A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line
spellingShingle A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line
Pinasco, Juan Pablo
Eigenvalues
Inverse Problems
Nodal Points
P-Laplacian
Singular Problem
title_short A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line
title_full A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line
title_fullStr A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line
title_full_unstemmed A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line
title_sort A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line
dc.creator.none.fl_str_mv Pinasco, Juan Pablo
Scarola, Cristian
author Pinasco, Juan Pablo
author_facet Pinasco, Juan Pablo
Scarola, Cristian
author_role author
author2 Scarola, Cristian
author2_role author
dc.subject.none.fl_str_mv Eigenvalues
Inverse Problems
Nodal Points
P-Laplacian
Singular Problem
topic Eigenvalues
Inverse Problems
Nodal Points
P-Laplacian
Singular Problem
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we study an inverse problem for a quasi-linear ordinary differential equation with a monotonic weight in the half-line. First, we find the asymptotic behavior of the singular eigenvalues, and we obtain a Weyl-type asymptotics imposing an appropriate integrability condition on the weight. Then, we investigate the inverse problem of recovering the coefficients from nodal data. We show that any dense subset of nodes of the eigenfunctions is enough to recover the weight.
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Scarola, Cristian. Universidad Nacional de la Pampa. Facultad de Cs.exactas y Naturales. Dto de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
description In this paper we study an inverse problem for a quasi-linear ordinary differential equation with a monotonic weight in the half-line. First, we find the asymptotic behavior of the singular eigenvalues, and we obtain a Weyl-type asymptotics imposing an appropriate integrability condition on the weight. Then, we investigate the inverse problem of recovering the coefficients from nodal data. We show that any dense subset of nodes of the eigenfunctions is enough to recover the weight.
publishDate 2016
dc.date.none.fl_str_mv 2016-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55544
Pinasco, Juan Pablo; Scarola, Cristian; A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line; Academic Press Inc Elsevier Science; Journal Of Differential Equations; 261; 2; 7-2016; 1000-1016
0022-0396
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55544
identifier_str_mv Pinasco, Juan Pablo; Scarola, Cristian; A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line; Academic Press Inc Elsevier Science; Journal Of Differential Equations; 261; 2; 7-2016; 1000-1016
0022-0396
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022039616300018
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jde.2016.03.031
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980303077900288
score 12.993085