Some Refinements and Generalizations of Bohr’s Inequality

Autores
Aljawi, Salma; Conde, Cristian Marcelo; Feki, Kais
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this article, we delve into the classic Bohr inequality for complex numbers, a fundamentalresult in complex analysis with broad mathematical applications. We offer refinements and generalizations of Bohr’s inequality, expanding on the established inequalities of N. G. de Bruijn and Radon, as well as leveraging the class of functions defined by the Daykin–Eliezer–Carlitz inequality. Our novel contribution lies in demonstrating that Bohr’s and Bergström’s inequalities can be derived from one another, revealing a deeper interconnectedness between these results. Furthermore, we present several new generalizations of Bohr’s inequality, along with other notable inequalities from theliterature, and discuss their various implications. By providing more comprehensive and verifiableconditions, our work extends previous research and enhances the understanding and applicability ofBohr’s inequality in mathematical studies.
Fil: Aljawi, Salma. Princess Nourah bint Abdulrahman University; Arabia Saudita
Fil: Conde, Cristian Marcelo. Area de Matematica (area de Matematica) ; Instituto de Ciencias ; Universidad Nacional de General Sarmiento; . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Feki, Kais. Najran University; Arabia Saudita
Materia
Bohr’s inequality
Bergström’s inequality
Radon’s inequality
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/244825

id CONICETDig_4aa1f00358657aadb22a5131d27d21fe
oai_identifier_str oai:ri.conicet.gov.ar:11336/244825
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Some Refinements and Generalizations of Bohr’s InequalityAljawi, SalmaConde, Cristian MarceloFeki, KaisBohr’s inequalityBergström’s inequalityRadon’s inequalityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article, we delve into the classic Bohr inequality for complex numbers, a fundamentalresult in complex analysis with broad mathematical applications. We offer refinements and generalizations of Bohr’s inequality, expanding on the established inequalities of N. G. de Bruijn and Radon, as well as leveraging the class of functions defined by the Daykin–Eliezer–Carlitz inequality. Our novel contribution lies in demonstrating that Bohr’s and Bergström’s inequalities can be derived from one another, revealing a deeper interconnectedness between these results. Furthermore, we present several new generalizations of Bohr’s inequality, along with other notable inequalities from theliterature, and discuss their various implications. By providing more comprehensive and verifiableconditions, our work extends previous research and enhances the understanding and applicability ofBohr’s inequality in mathematical studies.Fil: Aljawi, Salma. Princess Nourah bint Abdulrahman University; Arabia SauditaFil: Conde, Cristian Marcelo. Area de Matematica (area de Matematica) ; Instituto de Ciencias ; Universidad Nacional de General Sarmiento; . Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Feki, Kais. Najran University; Arabia SauditaMultidisciplinary Digital Publishing Institute2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/244825Aljawi, Salma; Conde, Cristian Marcelo; Feki, Kais; Some Refinements and Generalizations of Bohr’s Inequality; Multidisciplinary Digital Publishing Institute; Axioms; 13; 7; 6-2024; 1-122075-1680CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-1680/13/7/436info:eu-repo/semantics/altIdentifier/doi/10.3390/axioms13070436info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:05:26Zoai:ri.conicet.gov.ar:11336/244825instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:05:26.567CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Some Refinements and Generalizations of Bohr’s Inequality
title Some Refinements and Generalizations of Bohr’s Inequality
spellingShingle Some Refinements and Generalizations of Bohr’s Inequality
Aljawi, Salma
Bohr’s inequality
Bergström’s inequality
Radon’s inequality
title_short Some Refinements and Generalizations of Bohr’s Inequality
title_full Some Refinements and Generalizations of Bohr’s Inequality
title_fullStr Some Refinements and Generalizations of Bohr’s Inequality
title_full_unstemmed Some Refinements and Generalizations of Bohr’s Inequality
title_sort Some Refinements and Generalizations of Bohr’s Inequality
dc.creator.none.fl_str_mv Aljawi, Salma
Conde, Cristian Marcelo
Feki, Kais
author Aljawi, Salma
author_facet Aljawi, Salma
Conde, Cristian Marcelo
Feki, Kais
author_role author
author2 Conde, Cristian Marcelo
Feki, Kais
author2_role author
author
dc.subject.none.fl_str_mv Bohr’s inequality
Bergström’s inequality
Radon’s inequality
topic Bohr’s inequality
Bergström’s inequality
Radon’s inequality
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this article, we delve into the classic Bohr inequality for complex numbers, a fundamentalresult in complex analysis with broad mathematical applications. We offer refinements and generalizations of Bohr’s inequality, expanding on the established inequalities of N. G. de Bruijn and Radon, as well as leveraging the class of functions defined by the Daykin–Eliezer–Carlitz inequality. Our novel contribution lies in demonstrating that Bohr’s and Bergström’s inequalities can be derived from one another, revealing a deeper interconnectedness between these results. Furthermore, we present several new generalizations of Bohr’s inequality, along with other notable inequalities from theliterature, and discuss their various implications. By providing more comprehensive and verifiableconditions, our work extends previous research and enhances the understanding and applicability ofBohr’s inequality in mathematical studies.
Fil: Aljawi, Salma. Princess Nourah bint Abdulrahman University; Arabia Saudita
Fil: Conde, Cristian Marcelo. Area de Matematica (area de Matematica) ; Instituto de Ciencias ; Universidad Nacional de General Sarmiento; . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Feki, Kais. Najran University; Arabia Saudita
description In this article, we delve into the classic Bohr inequality for complex numbers, a fundamentalresult in complex analysis with broad mathematical applications. We offer refinements and generalizations of Bohr’s inequality, expanding on the established inequalities of N. G. de Bruijn and Radon, as well as leveraging the class of functions defined by the Daykin–Eliezer–Carlitz inequality. Our novel contribution lies in demonstrating that Bohr’s and Bergström’s inequalities can be derived from one another, revealing a deeper interconnectedness between these results. Furthermore, we present several new generalizations of Bohr’s inequality, along with other notable inequalities from theliterature, and discuss their various implications. By providing more comprehensive and verifiableconditions, our work extends previous research and enhances the understanding and applicability ofBohr’s inequality in mathematical studies.
publishDate 2024
dc.date.none.fl_str_mv 2024-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/244825
Aljawi, Salma; Conde, Cristian Marcelo; Feki, Kais; Some Refinements and Generalizations of Bohr’s Inequality; Multidisciplinary Digital Publishing Institute; Axioms; 13; 7; 6-2024; 1-12
2075-1680
CONICET Digital
CONICET
url http://hdl.handle.net/11336/244825
identifier_str_mv Aljawi, Salma; Conde, Cristian Marcelo; Feki, Kais; Some Refinements and Generalizations of Bohr’s Inequality; Multidisciplinary Digital Publishing Institute; Axioms; 13; 7; 6-2024; 1-12
2075-1680
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-1680/13/7/436
info:eu-repo/semantics/altIdentifier/doi/10.3390/axioms13070436
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613890006056960
score 13.070432