Selberg’s Inequality and Selberg Operator Bounds in Hilbert Spaces with Applications
- Autores
- Aljawi, Salma; Conde, Cristian Marcelo; Dragomir, Silvestru Sever; Feki, Kais
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the present work, we give a new proof of the well-known Selberg’s inequality in complex Hilbert spaces from an operator-theoretic perspective, establishing its fundamental equivalence with the Cauchy–Bunyakovsky–Schwarz inequality. We also derive several lower and upper bounds for the Selberg operator, including its norm estimates, refining classical results such as de Bruijn’s and Bohr’s inequalities. Additionally, we revisit a recent claim in the literature, providing a clarification of the conditions under which Selberg’s inequality extends to abstract bilinear forms.
Fil: Aljawi, Salma. Princess Nourah Bint Abdulrahman University; Arabia Saudita
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Area de Matematica (area de Matematica) ; Instituto de Ciencias ; Universidad Nacional de General Sarmiento;
Fil: Dragomir, Silvestru Sever. La Trobe University; Australia
Fil: Feki, Kais. Najran University; Arabia Saudita - Materia
-
Selberg’s inequality
Selberg operator
Cauchy–Bunyakovsky–Schwarz inequality
bilinear forms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/277970
Ver los metadatos del registro completo
| id |
CONICETDig_db2c94fe54a696630d5a02e3aef90a75 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/277970 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Selberg’s Inequality and Selberg Operator Bounds in Hilbert Spaces with ApplicationsAljawi, SalmaConde, Cristian MarceloDragomir, Silvestru SeverFeki, KaisSelberg’s inequalitySelberg operatorCauchy–Bunyakovsky–Schwarz inequalitybilinear formshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In the present work, we give a new proof of the well-known Selberg’s inequality in complex Hilbert spaces from an operator-theoretic perspective, establishing its fundamental equivalence with the Cauchy–Bunyakovsky–Schwarz inequality. We also derive several lower and upper bounds for the Selberg operator, including its norm estimates, refining classical results such as de Bruijn’s and Bohr’s inequalities. Additionally, we revisit a recent claim in the literature, providing a clarification of the conditions under which Selberg’s inequality extends to abstract bilinear forms.Fil: Aljawi, Salma. Princess Nourah Bint Abdulrahman University; Arabia SauditaFil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Area de Matematica (area de Matematica) ; Instituto de Ciencias ; Universidad Nacional de General Sarmiento;Fil: Dragomir, Silvestru Sever. La Trobe University; AustraliaFil: Feki, Kais. Najran University; Arabia SauditaMultidisciplinary Digital Publishing Institute2025-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/277970Aljawi, Salma; Conde, Cristian Marcelo; Dragomir, Silvestru Sever; Feki, Kais; Selberg’s Inequality and Selberg Operator Bounds in Hilbert Spaces with Applications; Multidisciplinary Digital Publishing Institute; Axioms; 14; 8; 7-2025; 1-222075-1680CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-1680/14/8/575info:eu-repo/semantics/altIdentifier/doi/10.3390/axioms14080575info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:37:51Zoai:ri.conicet.gov.ar:11336/277970instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:37:51.303CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Selberg’s Inequality and Selberg Operator Bounds in Hilbert Spaces with Applications |
| title |
Selberg’s Inequality and Selberg Operator Bounds in Hilbert Spaces with Applications |
| spellingShingle |
Selberg’s Inequality and Selberg Operator Bounds in Hilbert Spaces with Applications Aljawi, Salma Selberg’s inequality Selberg operator Cauchy–Bunyakovsky–Schwarz inequality bilinear forms |
| title_short |
Selberg’s Inequality and Selberg Operator Bounds in Hilbert Spaces with Applications |
| title_full |
Selberg’s Inequality and Selberg Operator Bounds in Hilbert Spaces with Applications |
| title_fullStr |
Selberg’s Inequality and Selberg Operator Bounds in Hilbert Spaces with Applications |
| title_full_unstemmed |
Selberg’s Inequality and Selberg Operator Bounds in Hilbert Spaces with Applications |
| title_sort |
Selberg’s Inequality and Selberg Operator Bounds in Hilbert Spaces with Applications |
| dc.creator.none.fl_str_mv |
Aljawi, Salma Conde, Cristian Marcelo Dragomir, Silvestru Sever Feki, Kais |
| author |
Aljawi, Salma |
| author_facet |
Aljawi, Salma Conde, Cristian Marcelo Dragomir, Silvestru Sever Feki, Kais |
| author_role |
author |
| author2 |
Conde, Cristian Marcelo Dragomir, Silvestru Sever Feki, Kais |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Selberg’s inequality Selberg operator Cauchy–Bunyakovsky–Schwarz inequality bilinear forms |
| topic |
Selberg’s inequality Selberg operator Cauchy–Bunyakovsky–Schwarz inequality bilinear forms |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In the present work, we give a new proof of the well-known Selberg’s inequality in complex Hilbert spaces from an operator-theoretic perspective, establishing its fundamental equivalence with the Cauchy–Bunyakovsky–Schwarz inequality. We also derive several lower and upper bounds for the Selberg operator, including its norm estimates, refining classical results such as de Bruijn’s and Bohr’s inequalities. Additionally, we revisit a recent claim in the literature, providing a clarification of the conditions under which Selberg’s inequality extends to abstract bilinear forms. Fil: Aljawi, Salma. Princess Nourah Bint Abdulrahman University; Arabia Saudita Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Area de Matematica (area de Matematica) ; Instituto de Ciencias ; Universidad Nacional de General Sarmiento; Fil: Dragomir, Silvestru Sever. La Trobe University; Australia Fil: Feki, Kais. Najran University; Arabia Saudita |
| description |
In the present work, we give a new proof of the well-known Selberg’s inequality in complex Hilbert spaces from an operator-theoretic perspective, establishing its fundamental equivalence with the Cauchy–Bunyakovsky–Schwarz inequality. We also derive several lower and upper bounds for the Selberg operator, including its norm estimates, refining classical results such as de Bruijn’s and Bohr’s inequalities. Additionally, we revisit a recent claim in the literature, providing a clarification of the conditions under which Selberg’s inequality extends to abstract bilinear forms. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/277970 Aljawi, Salma; Conde, Cristian Marcelo; Dragomir, Silvestru Sever; Feki, Kais; Selberg’s Inequality and Selberg Operator Bounds in Hilbert Spaces with Applications; Multidisciplinary Digital Publishing Institute; Axioms; 14; 8; 7-2025; 1-22 2075-1680 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/277970 |
| identifier_str_mv |
Aljawi, Salma; Conde, Cristian Marcelo; Dragomir, Silvestru Sever; Feki, Kais; Selberg’s Inequality and Selberg Operator Bounds in Hilbert Spaces with Applications; Multidisciplinary Digital Publishing Institute; Axioms; 14; 8; 7-2025; 1-22 2075-1680 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-1680/14/8/575 info:eu-repo/semantics/altIdentifier/doi/10.3390/axioms14080575 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
| publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335272615739392 |
| score |
12.952241 |