Some Refinements of Selberg Inequality and Related Results

Autores
Altwaijry, Najla; Conde, Cristian Marcelo; Sever Dragomir, Silvestru; Feki, Kais
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper introduces several refinements of the classical Selberg inequality, which isconsidered a significant result in the study of the spectral theory of symmetric spaces, a centraltopic in the field of symmetry studies. By utilizing the contraction property of the Selberg operator,we derive improved versions of the classical Selberg inequality. Additionally, we demonstrate theinterdependence among well-known inequalities such as Cauchy–Schwarz, Bessel, and the Selberginequality, revealing that these inequalities can be deduced from one another. This study showcasesthe enhancements made to the classical Selberg inequality and establishes the interconnectedness ofvarious mathematical inequalities.
Fil: Altwaijry, Najla. King Saud University; Arabia Saudita
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Sever Dragomir, Silvestru. University of Victoria; Canadá
Fil: Feki, Kais. University Of Sfax; Túnez
Materia
inner product space
Cauchy–Schwarz inequality
Selberg inequality
orthogonal projection
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/234345

id CONICETDig_0d0b1a1e8ce33972a1897c2e35431e98
oai_identifier_str oai:ri.conicet.gov.ar:11336/234345
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Some Refinements of Selberg Inequality and Related ResultsAltwaijry, NajlaConde, Cristian MarceloSever Dragomir, SilvestruFeki, Kaisinner product spaceCauchy–Schwarz inequalitySelberg inequalityorthogonal projectionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper introduces several refinements of the classical Selberg inequality, which isconsidered a significant result in the study of the spectral theory of symmetric spaces, a centraltopic in the field of symmetry studies. By utilizing the contraction property of the Selberg operator,we derive improved versions of the classical Selberg inequality. Additionally, we demonstrate theinterdependence among well-known inequalities such as Cauchy–Schwarz, Bessel, and the Selberginequality, revealing that these inequalities can be deduced from one another. This study showcasesthe enhancements made to the classical Selberg inequality and establishes the interconnectedness ofvarious mathematical inequalities.Fil: Altwaijry, Najla. King Saud University; Arabia SauditaFil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Sever Dragomir, Silvestru. University of Victoria; CanadáFil: Feki, Kais. University Of Sfax; TúnezMultidisciplinary Digital Publishing Institute2023-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/234345Altwaijry, Najla ; Conde, Cristian Marcelo; Sever Dragomir, Silvestru; Feki, Kais; Some Refinements of Selberg Inequality and Related Results; Multidisciplinary Digital Publishing Institute; Symmetry; 15; 8; 7-2023; 1-152073-8994CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/sym15081486info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:33:58Zoai:ri.conicet.gov.ar:11336/234345instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:33:58.99CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Some Refinements of Selberg Inequality and Related Results
title Some Refinements of Selberg Inequality and Related Results
spellingShingle Some Refinements of Selberg Inequality and Related Results
Altwaijry, Najla
inner product space
Cauchy–Schwarz inequality
Selberg inequality
orthogonal projection
title_short Some Refinements of Selberg Inequality and Related Results
title_full Some Refinements of Selberg Inequality and Related Results
title_fullStr Some Refinements of Selberg Inequality and Related Results
title_full_unstemmed Some Refinements of Selberg Inequality and Related Results
title_sort Some Refinements of Selberg Inequality and Related Results
dc.creator.none.fl_str_mv Altwaijry, Najla
Conde, Cristian Marcelo
Sever Dragomir, Silvestru
Feki, Kais
author Altwaijry, Najla
author_facet Altwaijry, Najla
Conde, Cristian Marcelo
Sever Dragomir, Silvestru
Feki, Kais
author_role author
author2 Conde, Cristian Marcelo
Sever Dragomir, Silvestru
Feki, Kais
author2_role author
author
author
dc.subject.none.fl_str_mv inner product space
Cauchy–Schwarz inequality
Selberg inequality
orthogonal projection
topic inner product space
Cauchy–Schwarz inequality
Selberg inequality
orthogonal projection
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This paper introduces several refinements of the classical Selberg inequality, which isconsidered a significant result in the study of the spectral theory of symmetric spaces, a centraltopic in the field of symmetry studies. By utilizing the contraction property of the Selberg operator,we derive improved versions of the classical Selberg inequality. Additionally, we demonstrate theinterdependence among well-known inequalities such as Cauchy–Schwarz, Bessel, and the Selberginequality, revealing that these inequalities can be deduced from one another. This study showcasesthe enhancements made to the classical Selberg inequality and establishes the interconnectedness ofvarious mathematical inequalities.
Fil: Altwaijry, Najla. King Saud University; Arabia Saudita
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Sever Dragomir, Silvestru. University of Victoria; Canadá
Fil: Feki, Kais. University Of Sfax; Túnez
description This paper introduces several refinements of the classical Selberg inequality, which isconsidered a significant result in the study of the spectral theory of symmetric spaces, a centraltopic in the field of symmetry studies. By utilizing the contraction property of the Selberg operator,we derive improved versions of the classical Selberg inequality. Additionally, we demonstrate theinterdependence among well-known inequalities such as Cauchy–Schwarz, Bessel, and the Selberginequality, revealing that these inequalities can be deduced from one another. This study showcasesthe enhancements made to the classical Selberg inequality and establishes the interconnectedness ofvarious mathematical inequalities.
publishDate 2023
dc.date.none.fl_str_mv 2023-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/234345
Altwaijry, Najla ; Conde, Cristian Marcelo; Sever Dragomir, Silvestru; Feki, Kais; Some Refinements of Selberg Inequality and Related Results; Multidisciplinary Digital Publishing Institute; Symmetry; 15; 8; 7-2023; 1-15
2073-8994
CONICET Digital
CONICET
url http://hdl.handle.net/11336/234345
identifier_str_mv Altwaijry, Najla ; Conde, Cristian Marcelo; Sever Dragomir, Silvestru; Feki, Kais; Some Refinements of Selberg Inequality and Related Results; Multidisciplinary Digital Publishing Institute; Symmetry; 15; 8; 7-2023; 1-15
2073-8994
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3390/sym15081486
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614355711164416
score 13.070432