Further refinements of the Heinz inequality

Autores
Kaur, Rupinderjit; Moslehian, Mohammad Sal; Singh, Mandeep; Conde, Cristian Marcelo
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The celebrated Heinz inequality asserts that 2|||A^1/2XB^1/2||| leq|||A^νXB^(1−ν)+ A^(1−ν)XB^ν||| leq |||AX + XB||| for X ∈ B(H ), A,B ∈B(H )_+, every unitarily invariant norm ||| · ||| and ν ∈ [0,1]. In this paper, we present several improvement of the Heinz inequality by using the convexity of the function F(ν) = ||||A^νXB^(1−ν)+ A^(1−ν)XB^ν|||, some integration techniques and various refinements of the Hermite?Hadamard inequality.
Fil: Kaur, Rupinderjit. Sant Longowal Institute of Engineering and Technology; India
Fil: Moslehian, Mohammad Sal. Ferdowsi University of Mashhad; Irán
Fil: Singh, Mandeep. Sant Longowal Institute of Engineering and Technology; India
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina. Universidad Nacional de General Sarmiento; Argentina
Materia
Heinz Inequality
Convex Function
Hermite-Hadamard Inequality
Positive Definite Matrix
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/12175

id CONICETDig_b3b53f49aa9b654d5b48762db198052b
oai_identifier_str oai:ri.conicet.gov.ar:11336/12175
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Further refinements of the Heinz inequalityKaur, RupinderjitMoslehian, Mohammad SalSingh, MandeepConde, Cristian MarceloHeinz InequalityConvex FunctionHermite-Hadamard InequalityPositive Definite Matrixhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The celebrated Heinz inequality asserts that 2|||A^1/2XB^1/2||| leq|||A^νXB^(1−ν)+ A^(1−ν)XB^ν||| leq |||AX + XB||| for X ∈ B(H ), A,B ∈B(H )_+, every unitarily invariant norm ||| · ||| and ν ∈ [0,1]. In this paper, we present several improvement of the Heinz inequality by using the convexity of the function F(ν) = ||||A^νXB^(1−ν)+ A^(1−ν)XB^ν|||, some integration techniques and various refinements of the Hermite?Hadamard inequality.Fil: Kaur, Rupinderjit. Sant Longowal Institute of Engineering and Technology; IndiaFil: Moslehian, Mohammad Sal. Ferdowsi University of Mashhad; IránFil: Singh, Mandeep. Sant Longowal Institute of Engineering and Technology; IndiaFil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina. Universidad Nacional de General Sarmiento; ArgentinaElsevier2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/12175Kaur, Rupinderjit; Moslehian, Mohammad Sal; Singh, Mandeep; Conde, Cristian Marcelo; Further refinements of the Heinz inequality; Elsevier; Linear Algebra And Its Applications; 447; 4-2014; 26-370024-3795enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0024379513000748info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1301.7346info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2013.01.012info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:26Zoai:ri.conicet.gov.ar:11336/12175instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:27.049CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Further refinements of the Heinz inequality
title Further refinements of the Heinz inequality
spellingShingle Further refinements of the Heinz inequality
Kaur, Rupinderjit
Heinz Inequality
Convex Function
Hermite-Hadamard Inequality
Positive Definite Matrix
title_short Further refinements of the Heinz inequality
title_full Further refinements of the Heinz inequality
title_fullStr Further refinements of the Heinz inequality
title_full_unstemmed Further refinements of the Heinz inequality
title_sort Further refinements of the Heinz inequality
dc.creator.none.fl_str_mv Kaur, Rupinderjit
Moslehian, Mohammad Sal
Singh, Mandeep
Conde, Cristian Marcelo
author Kaur, Rupinderjit
author_facet Kaur, Rupinderjit
Moslehian, Mohammad Sal
Singh, Mandeep
Conde, Cristian Marcelo
author_role author
author2 Moslehian, Mohammad Sal
Singh, Mandeep
Conde, Cristian Marcelo
author2_role author
author
author
dc.subject.none.fl_str_mv Heinz Inequality
Convex Function
Hermite-Hadamard Inequality
Positive Definite Matrix
topic Heinz Inequality
Convex Function
Hermite-Hadamard Inequality
Positive Definite Matrix
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The celebrated Heinz inequality asserts that 2|||A^1/2XB^1/2||| leq|||A^νXB^(1−ν)+ A^(1−ν)XB^ν||| leq |||AX + XB||| for X ∈ B(H ), A,B ∈B(H )_+, every unitarily invariant norm ||| · ||| and ν ∈ [0,1]. In this paper, we present several improvement of the Heinz inequality by using the convexity of the function F(ν) = ||||A^νXB^(1−ν)+ A^(1−ν)XB^ν|||, some integration techniques and various refinements of the Hermite?Hadamard inequality.
Fil: Kaur, Rupinderjit. Sant Longowal Institute of Engineering and Technology; India
Fil: Moslehian, Mohammad Sal. Ferdowsi University of Mashhad; Irán
Fil: Singh, Mandeep. Sant Longowal Institute of Engineering and Technology; India
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina. Universidad Nacional de General Sarmiento; Argentina
description The celebrated Heinz inequality asserts that 2|||A^1/2XB^1/2||| leq|||A^νXB^(1−ν)+ A^(1−ν)XB^ν||| leq |||AX + XB||| for X ∈ B(H ), A,B ∈B(H )_+, every unitarily invariant norm ||| · ||| and ν ∈ [0,1]. In this paper, we present several improvement of the Heinz inequality by using the convexity of the function F(ν) = ||||A^νXB^(1−ν)+ A^(1−ν)XB^ν|||, some integration techniques and various refinements of the Hermite?Hadamard inequality.
publishDate 2014
dc.date.none.fl_str_mv 2014-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/12175
Kaur, Rupinderjit; Moslehian, Mohammad Sal; Singh, Mandeep; Conde, Cristian Marcelo; Further refinements of the Heinz inequality; Elsevier; Linear Algebra And Its Applications; 447; 4-2014; 26-37
0024-3795
url http://hdl.handle.net/11336/12175
identifier_str_mv Kaur, Rupinderjit; Moslehian, Mohammad Sal; Singh, Mandeep; Conde, Cristian Marcelo; Further refinements of the Heinz inequality; Elsevier; Linear Algebra And Its Applications; 447; 4-2014; 26-37
0024-3795
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0024379513000748
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1301.7346
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2013.01.012
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614051094593536
score 13.070432