Further refinements of the Heinz inequality
- Autores
- Kaur, Rupinderjit; Moslehian, Mohammad Sal; Singh, Mandeep; Conde, Cristian Marcelo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The celebrated Heinz inequality asserts that 2|||A^1/2XB^1/2||| leq|||A^νXB^(1−ν)+ A^(1−ν)XB^ν||| leq |||AX + XB||| for X ∈ B(H ), A,B ∈B(H )_+, every unitarily invariant norm ||| · ||| and ν ∈ [0,1]. In this paper, we present several improvement of the Heinz inequality by using the convexity of the function F(ν) = ||||A^νXB^(1−ν)+ A^(1−ν)XB^ν|||, some integration techniques and various refinements of the Hermite?Hadamard inequality.
Fil: Kaur, Rupinderjit. Sant Longowal Institute of Engineering and Technology; India
Fil: Moslehian, Mohammad Sal. Ferdowsi University of Mashhad; Irán
Fil: Singh, Mandeep. Sant Longowal Institute of Engineering and Technology; India
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina. Universidad Nacional de General Sarmiento; Argentina - Materia
-
Heinz Inequality
Convex Function
Hermite-Hadamard Inequality
Positive Definite Matrix - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/12175
Ver los metadatos del registro completo
id |
CONICETDig_b3b53f49aa9b654d5b48762db198052b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/12175 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Further refinements of the Heinz inequalityKaur, RupinderjitMoslehian, Mohammad SalSingh, MandeepConde, Cristian MarceloHeinz InequalityConvex FunctionHermite-Hadamard InequalityPositive Definite Matrixhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The celebrated Heinz inequality asserts that 2|||A^1/2XB^1/2||| leq|||A^νXB^(1−ν)+ A^(1−ν)XB^ν||| leq |||AX + XB||| for X ∈ B(H ), A,B ∈B(H )_+, every unitarily invariant norm ||| · ||| and ν ∈ [0,1]. In this paper, we present several improvement of the Heinz inequality by using the convexity of the function F(ν) = ||||A^νXB^(1−ν)+ A^(1−ν)XB^ν|||, some integration techniques and various refinements of the Hermite?Hadamard inequality.Fil: Kaur, Rupinderjit. Sant Longowal Institute of Engineering and Technology; IndiaFil: Moslehian, Mohammad Sal. Ferdowsi University of Mashhad; IránFil: Singh, Mandeep. Sant Longowal Institute of Engineering and Technology; IndiaFil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina. Universidad Nacional de General Sarmiento; ArgentinaElsevier2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/12175Kaur, Rupinderjit; Moslehian, Mohammad Sal; Singh, Mandeep; Conde, Cristian Marcelo; Further refinements of the Heinz inequality; Elsevier; Linear Algebra And Its Applications; 447; 4-2014; 26-370024-3795enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0024379513000748info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1301.7346info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2013.01.012info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:13:26Zoai:ri.conicet.gov.ar:11336/12175instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:13:27.049CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Further refinements of the Heinz inequality |
title |
Further refinements of the Heinz inequality |
spellingShingle |
Further refinements of the Heinz inequality Kaur, Rupinderjit Heinz Inequality Convex Function Hermite-Hadamard Inequality Positive Definite Matrix |
title_short |
Further refinements of the Heinz inequality |
title_full |
Further refinements of the Heinz inequality |
title_fullStr |
Further refinements of the Heinz inequality |
title_full_unstemmed |
Further refinements of the Heinz inequality |
title_sort |
Further refinements of the Heinz inequality |
dc.creator.none.fl_str_mv |
Kaur, Rupinderjit Moslehian, Mohammad Sal Singh, Mandeep Conde, Cristian Marcelo |
author |
Kaur, Rupinderjit |
author_facet |
Kaur, Rupinderjit Moslehian, Mohammad Sal Singh, Mandeep Conde, Cristian Marcelo |
author_role |
author |
author2 |
Moslehian, Mohammad Sal Singh, Mandeep Conde, Cristian Marcelo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Heinz Inequality Convex Function Hermite-Hadamard Inequality Positive Definite Matrix |
topic |
Heinz Inequality Convex Function Hermite-Hadamard Inequality Positive Definite Matrix |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The celebrated Heinz inequality asserts that 2|||A^1/2XB^1/2||| leq|||A^νXB^(1−ν)+ A^(1−ν)XB^ν||| leq |||AX + XB||| for X ∈ B(H ), A,B ∈B(H )_+, every unitarily invariant norm ||| · ||| and ν ∈ [0,1]. In this paper, we present several improvement of the Heinz inequality by using the convexity of the function F(ν) = ||||A^νXB^(1−ν)+ A^(1−ν)XB^ν|||, some integration techniques and various refinements of the Hermite?Hadamard inequality. Fil: Kaur, Rupinderjit. Sant Longowal Institute of Engineering and Technology; India Fil: Moslehian, Mohammad Sal. Ferdowsi University of Mashhad; Irán Fil: Singh, Mandeep. Sant Longowal Institute of Engineering and Technology; India Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina. Universidad Nacional de General Sarmiento; Argentina |
description |
The celebrated Heinz inequality asserts that 2|||A^1/2XB^1/2||| leq|||A^νXB^(1−ν)+ A^(1−ν)XB^ν||| leq |||AX + XB||| for X ∈ B(H ), A,B ∈B(H )_+, every unitarily invariant norm ||| · ||| and ν ∈ [0,1]. In this paper, we present several improvement of the Heinz inequality by using the convexity of the function F(ν) = ||||A^νXB^(1−ν)+ A^(1−ν)XB^ν|||, some integration techniques and various refinements of the Hermite?Hadamard inequality. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/12175 Kaur, Rupinderjit; Moslehian, Mohammad Sal; Singh, Mandeep; Conde, Cristian Marcelo; Further refinements of the Heinz inequality; Elsevier; Linear Algebra And Its Applications; 447; 4-2014; 26-37 0024-3795 |
url |
http://hdl.handle.net/11336/12175 |
identifier_str_mv |
Kaur, Rupinderjit; Moslehian, Mohammad Sal; Singh, Mandeep; Conde, Cristian Marcelo; Further refinements of the Heinz inequality; Elsevier; Linear Algebra And Its Applications; 447; 4-2014; 26-37 0024-3795 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0024379513000748 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1301.7346 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2013.01.012 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614051094593536 |
score |
13.070432 |