Some refinements of the Cauchy-Schwarz inequality via orthogonal projections
- Autores
- Aljawi, Salma; Conde, Cristian Marcelo; Feki, Kais
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we present several refinements of the operator Cauchy-Schwarz inequality for positive operators. Our main result strengthens the classical form of this inequality and serves as a foundation for deriving a series of new inequalities that both generalize and improve upon existing results in the literature. Furthermore, we investigate substantial improvements to the Cauchy–Schwarz inequality by employing orthogonal projections, leading to sharper bounds in various settings. Additionally, we obtain a new perspective on the Cauchy–Schwarz inequality by showing that both the inner product and the product of norms can be characterized as extremal values of projection-dependent expressions. Several related inequalities are also established, many of which recover or extend recent contributions by other authors.
Fil: Aljawi, Salma. Princess Nourah Bint Abdulrahman University; Arabia Saudita
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Area de Matematica (area de Matematica) ; Instituto de Ciencias ; Universidad Nacional de General Sarmiento;
Fil: Feki, Kais. Najran University; Arabia Saudita - Materia
-
Cauchy-Schwarz inequality
Positive operators
Orthogonal projections
Selberg’s inequality - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/277176
Ver los metadatos del registro completo
| id |
CONICETDig_a33daf7237195bf0f66d3907546ce433 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/277176 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Some refinements of the Cauchy-Schwarz inequality via orthogonal projectionsAljawi, SalmaConde, Cristian MarceloFeki, KaisCauchy-Schwarz inequalityPositive operatorsOrthogonal projectionsSelberg’s inequalityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we present several refinements of the operator Cauchy-Schwarz inequality for positive operators. Our main result strengthens the classical form of this inequality and serves as a foundation for deriving a series of new inequalities that both generalize and improve upon existing results in the literature. Furthermore, we investigate substantial improvements to the Cauchy–Schwarz inequality by employing orthogonal projections, leading to sharper bounds in various settings. Additionally, we obtain a new perspective on the Cauchy–Schwarz inequality by showing that both the inner product and the product of norms can be characterized as extremal values of projection-dependent expressions. Several related inequalities are also established, many of which recover or extend recent contributions by other authors.Fil: Aljawi, Salma. Princess Nourah Bint Abdulrahman University; Arabia SauditaFil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Area de Matematica (area de Matematica) ; Instituto de Ciencias ; Universidad Nacional de General Sarmiento;Fil: Feki, Kais. Najran University; Arabia SauditaAIMS Press2025-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/277176Aljawi, Salma; Conde, Cristian Marcelo; Feki, Kais; Some refinements of the Cauchy-Schwarz inequality via orthogonal projections; AIMS Press; AIMS Mathematics; 10; 9; 9-2025; 20294-203112473-6988CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.aimspress.com/article/doi/10.3934/math.2025907info:eu-repo/semantics/altIdentifier/doi/10.3934/math.2025907info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:29:06Zoai:ri.conicet.gov.ar:11336/277176instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:29:06.57CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Some refinements of the Cauchy-Schwarz inequality via orthogonal projections |
| title |
Some refinements of the Cauchy-Schwarz inequality via orthogonal projections |
| spellingShingle |
Some refinements of the Cauchy-Schwarz inequality via orthogonal projections Aljawi, Salma Cauchy-Schwarz inequality Positive operators Orthogonal projections Selberg’s inequality |
| title_short |
Some refinements of the Cauchy-Schwarz inequality via orthogonal projections |
| title_full |
Some refinements of the Cauchy-Schwarz inequality via orthogonal projections |
| title_fullStr |
Some refinements of the Cauchy-Schwarz inequality via orthogonal projections |
| title_full_unstemmed |
Some refinements of the Cauchy-Schwarz inequality via orthogonal projections |
| title_sort |
Some refinements of the Cauchy-Schwarz inequality via orthogonal projections |
| dc.creator.none.fl_str_mv |
Aljawi, Salma Conde, Cristian Marcelo Feki, Kais |
| author |
Aljawi, Salma |
| author_facet |
Aljawi, Salma Conde, Cristian Marcelo Feki, Kais |
| author_role |
author |
| author2 |
Conde, Cristian Marcelo Feki, Kais |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Cauchy-Schwarz inequality Positive operators Orthogonal projections Selberg’s inequality |
| topic |
Cauchy-Schwarz inequality Positive operators Orthogonal projections Selberg’s inequality |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this paper, we present several refinements of the operator Cauchy-Schwarz inequality for positive operators. Our main result strengthens the classical form of this inequality and serves as a foundation for deriving a series of new inequalities that both generalize and improve upon existing results in the literature. Furthermore, we investigate substantial improvements to the Cauchy–Schwarz inequality by employing orthogonal projections, leading to sharper bounds in various settings. Additionally, we obtain a new perspective on the Cauchy–Schwarz inequality by showing that both the inner product and the product of norms can be characterized as extremal values of projection-dependent expressions. Several related inequalities are also established, many of which recover or extend recent contributions by other authors. Fil: Aljawi, Salma. Princess Nourah Bint Abdulrahman University; Arabia Saudita Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Area de Matematica (area de Matematica) ; Instituto de Ciencias ; Universidad Nacional de General Sarmiento; Fil: Feki, Kais. Najran University; Arabia Saudita |
| description |
In this paper, we present several refinements of the operator Cauchy-Schwarz inequality for positive operators. Our main result strengthens the classical form of this inequality and serves as a foundation for deriving a series of new inequalities that both generalize and improve upon existing results in the literature. Furthermore, we investigate substantial improvements to the Cauchy–Schwarz inequality by employing orthogonal projections, leading to sharper bounds in various settings. Additionally, we obtain a new perspective on the Cauchy–Schwarz inequality by showing that both the inner product and the product of norms can be characterized as extremal values of projection-dependent expressions. Several related inequalities are also established, many of which recover or extend recent contributions by other authors. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/277176 Aljawi, Salma; Conde, Cristian Marcelo; Feki, Kais; Some refinements of the Cauchy-Schwarz inequality via orthogonal projections; AIMS Press; AIMS Mathematics; 10; 9; 9-2025; 20294-20311 2473-6988 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/277176 |
| identifier_str_mv |
Aljawi, Salma; Conde, Cristian Marcelo; Feki, Kais; Some refinements of the Cauchy-Schwarz inequality via orthogonal projections; AIMS Press; AIMS Mathematics; 10; 9; 9-2025; 20294-20311 2473-6988 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.aimspress.com/article/doi/10.3934/math.2025907 info:eu-repo/semantics/altIdentifier/doi/10.3934/math.2025907 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
AIMS Press |
| publisher.none.fl_str_mv |
AIMS Press |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335683187769344 |
| score |
12.952241 |