Robust tests in generalized linear models with missing responses

Autores
Bianco, Ana Maria; Boente, Graciela Lina; Rodrigues, Isabel
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In many situations, data follow a generalized linear model in which the mean of the responses is modelled, through a link function, linearly on the covariates. Robust estimators for the regression parameter in order to build test statistics for this parameter, when missing data occur in the responses, are considered. The asymptotic behaviour of the robust estimators for the regression parameter is obtained, under the null hypothesis and under contiguous alternatives. This allows us to derive the asymptotic distribution of the robust Wald-type test statistics constructed from the proposed estimators. The influence function of the test statistics is also studied. A simulation study allows us to compare the behaviour of the classical and robust tests, under different contamination schemes. Applications to real data sets enable to investigate the sensitivity of the p-value to the missing scheme and to the presence of outliers.
Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Cs.exactas y Naturales. Instituto de Calculo; Argentina;
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Invest.cientif.y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Investigaciones Matematicas;
Fil: Rodrigues, Isabel. Instituto Superior Tecnico. Department Of Mathematics; Portugal;
Fuente
www.researchgate.net/profile/Ana_Bianco/citations
Materia
Fisher-consistency
Generalized linear models
Influence function
Missing data
Outliers
Robust testing
Nivel de accesibilidad
acceso embargado
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/738

id CONICETDig_31039b82a508342789b0a18d51fd6d70
oai_identifier_str oai:ri.conicet.gov.ar:11336/738
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Robust tests in generalized linear models with missing responsesBianco, Ana MariaBoente, Graciela LinaRodrigues, IsabelFisher-consistencyGeneralized linear modelsInfluence functionMissing dataOutliersRobust testinghttps://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1In many situations, data follow a generalized linear model in which the mean of the responses is modelled, through a link function, linearly on the covariates. Robust estimators for the regression parameter in order to build test statistics for this parameter, when missing data occur in the responses, are considered. The asymptotic behaviour of the robust estimators for the regression parameter is obtained, under the null hypothesis and under contiguous alternatives. This allows us to derive the asymptotic distribution of the robust Wald-type test statistics constructed from the proposed estimators. The influence function of the test statistics is also studied. A simulation study allows us to compare the behaviour of the classical and robust tests, under different contamination schemes. Applications to real data sets enable to investigate the sensitivity of the p-value to the missing scheme and to the presence of outliers.Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Cs.exactas y Naturales. Instituto de Calculo; Argentina;Fil: Boente Boente, Graciela Lina. Consejo Nacional de Invest.cientif.y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Investigaciones Matematicas;Fil: Rodrigues, Isabel. Instituto Superior Tecnico. Department Of Mathematics; Portugal;Elsevier Science Bv2013-09info:eu-repo/date/embargoEnd/2016-06-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/738Bianco, Ana Maria; Boente Boente, Graciela Lina; Rodrigues, Isabel; Robust tests in generalized linear models with missing responses; Elsevier Science Bv; Computational Statistics And Data Analysis; 65; 9-2013; 80-970167-9473www.researchgate.net/profile/Ana_Bianco/citationsreponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicasenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167947312002071info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/2025-10-15T14:58:03Zoai:ri.conicet.gov.ar:11336/738instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:58:04.07CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Robust tests in generalized linear models with missing responses
title Robust tests in generalized linear models with missing responses
spellingShingle Robust tests in generalized linear models with missing responses
Bianco, Ana Maria
Fisher-consistency
Generalized linear models
Influence function
Missing data
Outliers
Robust testing
title_short Robust tests in generalized linear models with missing responses
title_full Robust tests in generalized linear models with missing responses
title_fullStr Robust tests in generalized linear models with missing responses
title_full_unstemmed Robust tests in generalized linear models with missing responses
title_sort Robust tests in generalized linear models with missing responses
dc.creator.none.fl_str_mv Bianco, Ana Maria
Boente, Graciela Lina
Rodrigues, Isabel
author Bianco, Ana Maria
author_facet Bianco, Ana Maria
Boente, Graciela Lina
Rodrigues, Isabel
author_role author
author2 Boente, Graciela Lina
Rodrigues, Isabel
author2_role author
author
dc.subject.none.fl_str_mv Fisher-consistency
Generalized linear models
Influence function
Missing data
Outliers
Robust testing
topic Fisher-consistency
Generalized linear models
Influence function
Missing data
Outliers
Robust testing
purl_subject.fl_str_mv https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.1
dc.description.none.fl_txt_mv In many situations, data follow a generalized linear model in which the mean of the responses is modelled, through a link function, linearly on the covariates. Robust estimators for the regression parameter in order to build test statistics for this parameter, when missing data occur in the responses, are considered. The asymptotic behaviour of the robust estimators for the regression parameter is obtained, under the null hypothesis and under contiguous alternatives. This allows us to derive the asymptotic distribution of the robust Wald-type test statistics constructed from the proposed estimators. The influence function of the test statistics is also studied. A simulation study allows us to compare the behaviour of the classical and robust tests, under different contamination schemes. Applications to real data sets enable to investigate the sensitivity of the p-value to the missing scheme and to the presence of outliers.
Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Cs.exactas y Naturales. Instituto de Calculo; Argentina;
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Invest.cientif.y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Investigaciones Matematicas;
Fil: Rodrigues, Isabel. Instituto Superior Tecnico. Department Of Mathematics; Portugal;
description In many situations, data follow a generalized linear model in which the mean of the responses is modelled, through a link function, linearly on the covariates. Robust estimators for the regression parameter in order to build test statistics for this parameter, when missing data occur in the responses, are considered. The asymptotic behaviour of the robust estimators for the regression parameter is obtained, under the null hypothesis and under contiguous alternatives. This allows us to derive the asymptotic distribution of the robust Wald-type test statistics constructed from the proposed estimators. The influence function of the test statistics is also studied. A simulation study allows us to compare the behaviour of the classical and robust tests, under different contamination schemes. Applications to real data sets enable to investigate the sensitivity of the p-value to the missing scheme and to the presence of outliers.
publishDate 2013
dc.date.none.fl_str_mv 2013-09
info:eu-repo/date/embargoEnd/2016-06-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/738
Bianco, Ana Maria; Boente Boente, Graciela Lina; Rodrigues, Isabel; Robust tests in generalized linear models with missing responses; Elsevier Science Bv; Computational Statistics And Data Analysis; 65; 9-2013; 80-97
0167-9473
url http://hdl.handle.net/11336/738
identifier_str_mv Bianco, Ana Maria; Boente Boente, Graciela Lina; Rodrigues, Isabel; Robust tests in generalized linear models with missing responses; Elsevier Science Bv; Computational Statistics And Data Analysis; 65; 9-2013; 80-97
0167-9473
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167947312002071
dc.rights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Bv
publisher.none.fl_str_mv Elsevier Science Bv
dc.source.none.fl_str_mv www.researchgate.net/profile/Ana_Bianco/citations
reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083120423501824
score 13.221938