Finding local leaf vein patterns for legume characterization and classification

Autores
Larese, Monica Graciela; Granitto, Pablo Miguel
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In recent years, the importance of analyzing the effect of genetic variations on the plant phenotypes has raised much attention. In this paper, we describe a procedure which can be useful to discover representative leaf vein patterns for each species or variety under analysis. We consider three legumes, namely red bean, white bean and soybean. Soybean specimens are also divided in three cultivars. In total there are five leaf vein image classes. In order to find the discriminative patterns, we detect Self-Invariant Feature Transform (SIFT) keypoints in the segmented vein images. The Bag of Words model is built using SIFT descriptors, and classification is performed resorting to Support Vector Machines with a Gaussian kernel. Classification accuracies outperform recent results available in the literature and manual classification, showing the advantages of the procedure. The Bag of Words model is useful for vein patterns characterization and provides a means to highlight the most representative patterns for each species and variety.
Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Materia
Leaf Vein Characterization
Legume Species And Varieties Classification
Plant Phenotyping
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/52646

id CONICETDig_4a530634fb2cef0f288497e18c868372
oai_identifier_str oai:ri.conicet.gov.ar:11336/52646
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Finding local leaf vein patterns for legume characterization and classificationLarese, Monica GracielaGranitto, Pablo MiguelLeaf Vein CharacterizationLegume Species And Varieties ClassificationPlant Phenotypinghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In recent years, the importance of analyzing the effect of genetic variations on the plant phenotypes has raised much attention. In this paper, we describe a procedure which can be useful to discover representative leaf vein patterns for each species or variety under analysis. We consider three legumes, namely red bean, white bean and soybean. Soybean specimens are also divided in three cultivars. In total there are five leaf vein image classes. In order to find the discriminative patterns, we detect Self-Invariant Feature Transform (SIFT) keypoints in the segmented vein images. The Bag of Words model is built using SIFT descriptors, and classification is performed resorting to Support Vector Machines with a Gaussian kernel. Classification accuracies outperform recent results available in the literature and manual classification, showing the advantages of the procedure. The Bag of Words model is useful for vein patterns characterization and provides a means to highlight the most representative patterns for each species and variety.Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaSpringer2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52646Larese, Monica Graciela; Granitto, Pablo Miguel; Finding local leaf vein patterns for legume characterization and classification; Springer; Machine Vision And Applications; 27; 5; 7-2016; 709-7200932-8092CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00138-015-0732-8info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00138-015-0732-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:36:49Zoai:ri.conicet.gov.ar:11336/52646instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:36:49.477CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Finding local leaf vein patterns for legume characterization and classification
title Finding local leaf vein patterns for legume characterization and classification
spellingShingle Finding local leaf vein patterns for legume characterization and classification
Larese, Monica Graciela
Leaf Vein Characterization
Legume Species And Varieties Classification
Plant Phenotyping
title_short Finding local leaf vein patterns for legume characterization and classification
title_full Finding local leaf vein patterns for legume characterization and classification
title_fullStr Finding local leaf vein patterns for legume characterization and classification
title_full_unstemmed Finding local leaf vein patterns for legume characterization and classification
title_sort Finding local leaf vein patterns for legume characterization and classification
dc.creator.none.fl_str_mv Larese, Monica Graciela
Granitto, Pablo Miguel
author Larese, Monica Graciela
author_facet Larese, Monica Graciela
Granitto, Pablo Miguel
author_role author
author2 Granitto, Pablo Miguel
author2_role author
dc.subject.none.fl_str_mv Leaf Vein Characterization
Legume Species And Varieties Classification
Plant Phenotyping
topic Leaf Vein Characterization
Legume Species And Varieties Classification
Plant Phenotyping
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In recent years, the importance of analyzing the effect of genetic variations on the plant phenotypes has raised much attention. In this paper, we describe a procedure which can be useful to discover representative leaf vein patterns for each species or variety under analysis. We consider three legumes, namely red bean, white bean and soybean. Soybean specimens are also divided in three cultivars. In total there are five leaf vein image classes. In order to find the discriminative patterns, we detect Self-Invariant Feature Transform (SIFT) keypoints in the segmented vein images. The Bag of Words model is built using SIFT descriptors, and classification is performed resorting to Support Vector Machines with a Gaussian kernel. Classification accuracies outperform recent results available in the literature and manual classification, showing the advantages of the procedure. The Bag of Words model is useful for vein patterns characterization and provides a means to highlight the most representative patterns for each species and variety.
Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
description In recent years, the importance of analyzing the effect of genetic variations on the plant phenotypes has raised much attention. In this paper, we describe a procedure which can be useful to discover representative leaf vein patterns for each species or variety under analysis. We consider three legumes, namely red bean, white bean and soybean. Soybean specimens are also divided in three cultivars. In total there are five leaf vein image classes. In order to find the discriminative patterns, we detect Self-Invariant Feature Transform (SIFT) keypoints in the segmented vein images. The Bag of Words model is built using SIFT descriptors, and classification is performed resorting to Support Vector Machines with a Gaussian kernel. Classification accuracies outperform recent results available in the literature and manual classification, showing the advantages of the procedure. The Bag of Words model is useful for vein patterns characterization and provides a means to highlight the most representative patterns for each species and variety.
publishDate 2016
dc.date.none.fl_str_mv 2016-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/52646
Larese, Monica Graciela; Granitto, Pablo Miguel; Finding local leaf vein patterns for legume characterization and classification; Springer; Machine Vision And Applications; 27; 5; 7-2016; 709-720
0932-8092
CONICET Digital
CONICET
url http://hdl.handle.net/11336/52646
identifier_str_mv Larese, Monica Graciela; Granitto, Pablo Miguel; Finding local leaf vein patterns for legume characterization and classification; Springer; Machine Vision And Applications; 27; 5; 7-2016; 709-720
0932-8092
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s00138-015-0732-8
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00138-015-0732-8
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082836166082560
score 13.22299