Finding local leaf vein patterns for legume characterization and classification
- Autores
- Larese, Monica Graciela; Granitto, Pablo Miguel
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In recent years, the importance of analyzing the effect of genetic variations on the plant phenotypes has raised much attention. In this paper, we describe a procedure which can be useful to discover representative leaf vein patterns for each species or variety under analysis. We consider three legumes, namely red bean, white bean and soybean. Soybean specimens are also divided in three cultivars. In total there are five leaf vein image classes. In order to find the discriminative patterns, we detect Self-Invariant Feature Transform (SIFT) keypoints in the segmented vein images. The Bag of Words model is built using SIFT descriptors, and classification is performed resorting to Support Vector Machines with a Gaussian kernel. Classification accuracies outperform recent results available in the literature and manual classification, showing the advantages of the procedure. The Bag of Words model is useful for vein patterns characterization and provides a means to highlight the most representative patterns for each species and variety.
Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina - Materia
-
Leaf Vein Characterization
Legume Species And Varieties Classification
Plant Phenotyping - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/52646
Ver los metadatos del registro completo
id |
CONICETDig_4a530634fb2cef0f288497e18c868372 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/52646 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Finding local leaf vein patterns for legume characterization and classificationLarese, Monica GracielaGranitto, Pablo MiguelLeaf Vein CharacterizationLegume Species And Varieties ClassificationPlant Phenotypinghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In recent years, the importance of analyzing the effect of genetic variations on the plant phenotypes has raised much attention. In this paper, we describe a procedure which can be useful to discover representative leaf vein patterns for each species or variety under analysis. We consider three legumes, namely red bean, white bean and soybean. Soybean specimens are also divided in three cultivars. In total there are five leaf vein image classes. In order to find the discriminative patterns, we detect Self-Invariant Feature Transform (SIFT) keypoints in the segmented vein images. The Bag of Words model is built using SIFT descriptors, and classification is performed resorting to Support Vector Machines with a Gaussian kernel. Classification accuracies outperform recent results available in the literature and manual classification, showing the advantages of the procedure. The Bag of Words model is useful for vein patterns characterization and provides a means to highlight the most representative patterns for each species and variety.Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaSpringer2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52646Larese, Monica Graciela; Granitto, Pablo Miguel; Finding local leaf vein patterns for legume characterization and classification; Springer; Machine Vision And Applications; 27; 5; 7-2016; 709-7200932-8092CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00138-015-0732-8info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00138-015-0732-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:36:49Zoai:ri.conicet.gov.ar:11336/52646instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:36:49.477CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Finding local leaf vein patterns for legume characterization and classification |
title |
Finding local leaf vein patterns for legume characterization and classification |
spellingShingle |
Finding local leaf vein patterns for legume characterization and classification Larese, Monica Graciela Leaf Vein Characterization Legume Species And Varieties Classification Plant Phenotyping |
title_short |
Finding local leaf vein patterns for legume characterization and classification |
title_full |
Finding local leaf vein patterns for legume characterization and classification |
title_fullStr |
Finding local leaf vein patterns for legume characterization and classification |
title_full_unstemmed |
Finding local leaf vein patterns for legume characterization and classification |
title_sort |
Finding local leaf vein patterns for legume characterization and classification |
dc.creator.none.fl_str_mv |
Larese, Monica Graciela Granitto, Pablo Miguel |
author |
Larese, Monica Graciela |
author_facet |
Larese, Monica Graciela Granitto, Pablo Miguel |
author_role |
author |
author2 |
Granitto, Pablo Miguel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Leaf Vein Characterization Legume Species And Varieties Classification Plant Phenotyping |
topic |
Leaf Vein Characterization Legume Species And Varieties Classification Plant Phenotyping |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In recent years, the importance of analyzing the effect of genetic variations on the plant phenotypes has raised much attention. In this paper, we describe a procedure which can be useful to discover representative leaf vein patterns for each species or variety under analysis. We consider three legumes, namely red bean, white bean and soybean. Soybean specimens are also divided in three cultivars. In total there are five leaf vein image classes. In order to find the discriminative patterns, we detect Self-Invariant Feature Transform (SIFT) keypoints in the segmented vein images. The Bag of Words model is built using SIFT descriptors, and classification is performed resorting to Support Vector Machines with a Gaussian kernel. Classification accuracies outperform recent results available in the literature and manual classification, showing the advantages of the procedure. The Bag of Words model is useful for vein patterns characterization and provides a means to highlight the most representative patterns for each species and variety. Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina |
description |
In recent years, the importance of analyzing the effect of genetic variations on the plant phenotypes has raised much attention. In this paper, we describe a procedure which can be useful to discover representative leaf vein patterns for each species or variety under analysis. We consider three legumes, namely red bean, white bean and soybean. Soybean specimens are also divided in three cultivars. In total there are five leaf vein image classes. In order to find the discriminative patterns, we detect Self-Invariant Feature Transform (SIFT) keypoints in the segmented vein images. The Bag of Words model is built using SIFT descriptors, and classification is performed resorting to Support Vector Machines with a Gaussian kernel. Classification accuracies outperform recent results available in the literature and manual classification, showing the advantages of the procedure. The Bag of Words model is useful for vein patterns characterization and provides a means to highlight the most representative patterns for each species and variety. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/52646 Larese, Monica Graciela; Granitto, Pablo Miguel; Finding local leaf vein patterns for legume characterization and classification; Springer; Machine Vision And Applications; 27; 5; 7-2016; 709-720 0932-8092 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/52646 |
identifier_str_mv |
Larese, Monica Graciela; Granitto, Pablo Miguel; Finding local leaf vein patterns for legume characterization and classification; Springer; Machine Vision And Applications; 27; 5; 7-2016; 709-720 0932-8092 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00138-015-0732-8 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00138-015-0732-8 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082836166082560 |
score |
13.22299 |