Multiscale recognition of legume varieties based on leaf venation images

Autores
Larese, Monica Graciela; Baya, Ariel Emilio; Craviotto, Roque Mario; Arango, Miriam R.; Gallo, Carina; Granitto, Pablo Miguel
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we propose an automatic low cost procedure aimed at classifying legume species and varieties based exclusively on the characterization and analysis of the leaf venation network. The identification of leaf venation patterns which are characteristic for each species or variety is not an easy task since in some situations (specially for cultivars from the same species) the vein differences are visually indistinguishable for humans. The proposed procedure takes as input leaf images acquired using a standard scanner, processes the images in order to segment the veins at different scales, and measures different traits on them. We use these features in combination with modern automatic classifiers and feature selection techniques in order to perform recognition. The process was initially applied to recognize three different legumes in order to evaluate the improvements over previous works in the literature, and then it was employed to distinguish three diverse soybean cultivars. The results show the improvements achieved by the usage of the multiscale features. The cultivar recognition is a more challenging problem, since the experts cannot distinguish evident differences in plain sight. However, we achieve acceptable classification results. We also analyze the feature relevance and identify, for each classifier, a small set of distinctive traits to differentiate the species and varieties
Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Baya, Ariel Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Craviotto, Roque Mario. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Arango, Miriam R.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Gallo, Carina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Materia
Image Classification
Image Analysis
Cultivars Recognition
Multiscale Vein Image
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/29718

id CONICETDig_d208b1cd449f59b1643ef7adec55a9c4
oai_identifier_str oai:ri.conicet.gov.ar:11336/29718
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Multiscale recognition of legume varieties based on leaf venation imagesLarese, Monica GracielaBaya, Ariel EmilioCraviotto, Roque MarioArango, Miriam R.Gallo, CarinaGranitto, Pablo MiguelImage ClassificationImage AnalysisCultivars RecognitionMultiscale Vein Imagehttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this work we propose an automatic low cost procedure aimed at classifying legume species and varieties based exclusively on the characterization and analysis of the leaf venation network. The identification of leaf venation patterns which are characteristic for each species or variety is not an easy task since in some situations (specially for cultivars from the same species) the vein differences are visually indistinguishable for humans. The proposed procedure takes as input leaf images acquired using a standard scanner, processes the images in order to segment the veins at different scales, and measures different traits on them. We use these features in combination with modern automatic classifiers and feature selection techniques in order to perform recognition. The process was initially applied to recognize three different legumes in order to evaluate the improvements over previous works in the literature, and then it was employed to distinguish three diverse soybean cultivars. The results show the improvements achieved by the usage of the multiscale features. The cultivar recognition is a more challenging problem, since the experts cannot distinguish evident differences in plain sight. However, we achieve acceptable classification results. We also analyze the feature relevance and identify, for each classifier, a small set of distinctive traits to differentiate the species and varietiesFil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Baya, Ariel Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Craviotto, Roque Mario. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Arango, Miriam R.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Gallo, Carina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaPergamon-Elsevier Science Ltd.2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29718Larese, Monica Graciela; Baya, Ariel Emilio; Craviotto, Roque Mario; Arango, Miriam R.; Gallo, Carina; et al.; Multiscale recognition of legume varieties based on leaf venation images; Pergamon-Elsevier Science Ltd.; Expert Systems with Applications; 41; 10; 8-2014; 4638-46470957-4174CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2014.01.029info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417414000529info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:00:01Zoai:ri.conicet.gov.ar:11336/29718instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:00:02.053CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Multiscale recognition of legume varieties based on leaf venation images
title Multiscale recognition of legume varieties based on leaf venation images
spellingShingle Multiscale recognition of legume varieties based on leaf venation images
Larese, Monica Graciela
Image Classification
Image Analysis
Cultivars Recognition
Multiscale Vein Image
title_short Multiscale recognition of legume varieties based on leaf venation images
title_full Multiscale recognition of legume varieties based on leaf venation images
title_fullStr Multiscale recognition of legume varieties based on leaf venation images
title_full_unstemmed Multiscale recognition of legume varieties based on leaf venation images
title_sort Multiscale recognition of legume varieties based on leaf venation images
dc.creator.none.fl_str_mv Larese, Monica Graciela
Baya, Ariel Emilio
Craviotto, Roque Mario
Arango, Miriam R.
Gallo, Carina
Granitto, Pablo Miguel
author Larese, Monica Graciela
author_facet Larese, Monica Graciela
Baya, Ariel Emilio
Craviotto, Roque Mario
Arango, Miriam R.
Gallo, Carina
Granitto, Pablo Miguel
author_role author
author2 Baya, Ariel Emilio
Craviotto, Roque Mario
Arango, Miriam R.
Gallo, Carina
Granitto, Pablo Miguel
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Image Classification
Image Analysis
Cultivars Recognition
Multiscale Vein Image
topic Image Classification
Image Analysis
Cultivars Recognition
Multiscale Vein Image
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work we propose an automatic low cost procedure aimed at classifying legume species and varieties based exclusively on the characterization and analysis of the leaf venation network. The identification of leaf venation patterns which are characteristic for each species or variety is not an easy task since in some situations (specially for cultivars from the same species) the vein differences are visually indistinguishable for humans. The proposed procedure takes as input leaf images acquired using a standard scanner, processes the images in order to segment the veins at different scales, and measures different traits on them. We use these features in combination with modern automatic classifiers and feature selection techniques in order to perform recognition. The process was initially applied to recognize three different legumes in order to evaluate the improvements over previous works in the literature, and then it was employed to distinguish three diverse soybean cultivars. The results show the improvements achieved by the usage of the multiscale features. The cultivar recognition is a more challenging problem, since the experts cannot distinguish evident differences in plain sight. However, we achieve acceptable classification results. We also analyze the feature relevance and identify, for each classifier, a small set of distinctive traits to differentiate the species and varieties
Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Baya, Ariel Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Craviotto, Roque Mario. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Arango, Miriam R.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Gallo, Carina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
description In this work we propose an automatic low cost procedure aimed at classifying legume species and varieties based exclusively on the characterization and analysis of the leaf venation network. The identification of leaf venation patterns which are characteristic for each species or variety is not an easy task since in some situations (specially for cultivars from the same species) the vein differences are visually indistinguishable for humans. The proposed procedure takes as input leaf images acquired using a standard scanner, processes the images in order to segment the veins at different scales, and measures different traits on them. We use these features in combination with modern automatic classifiers and feature selection techniques in order to perform recognition. The process was initially applied to recognize three different legumes in order to evaluate the improvements over previous works in the literature, and then it was employed to distinguish three diverse soybean cultivars. The results show the improvements achieved by the usage of the multiscale features. The cultivar recognition is a more challenging problem, since the experts cannot distinguish evident differences in plain sight. However, we achieve acceptable classification results. We also analyze the feature relevance and identify, for each classifier, a small set of distinctive traits to differentiate the species and varieties
publishDate 2014
dc.date.none.fl_str_mv 2014-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/29718
Larese, Monica Graciela; Baya, Ariel Emilio; Craviotto, Roque Mario; Arango, Miriam R.; Gallo, Carina; et al.; Multiscale recognition of legume varieties based on leaf venation images; Pergamon-Elsevier Science Ltd.; Expert Systems with Applications; 41; 10; 8-2014; 4638-4647
0957-4174
CONICET Digital
CONICET
url http://hdl.handle.net/11336/29718
identifier_str_mv Larese, Monica Graciela; Baya, Ariel Emilio; Craviotto, Roque Mario; Arango, Miriam R.; Gallo, Carina; et al.; Multiscale recognition of legume varieties based on leaf venation images; Pergamon-Elsevier Science Ltd.; Expert Systems with Applications; 41; 10; 8-2014; 4638-4647
0957-4174
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2014.01.029
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417414000529
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd.
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd.
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842979853533446144
score 12.993085