Multiscale recognition of legume varieties based on leaf venation images
- Autores
- Larese, Monica Graciela; Baya, Ariel Emilio; Craviotto, Roque Mario; Arango, Miriam R.; Gallo, Carina; Granitto, Pablo Miguel
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we propose an automatic low cost procedure aimed at classifying legume species and varieties based exclusively on the characterization and analysis of the leaf venation network. The identification of leaf venation patterns which are characteristic for each species or variety is not an easy task since in some situations (specially for cultivars from the same species) the vein differences are visually indistinguishable for humans. The proposed procedure takes as input leaf images acquired using a standard scanner, processes the images in order to segment the veins at different scales, and measures different traits on them. We use these features in combination with modern automatic classifiers and feature selection techniques in order to perform recognition. The process was initially applied to recognize three different legumes in order to evaluate the improvements over previous works in the literature, and then it was employed to distinguish three diverse soybean cultivars. The results show the improvements achieved by the usage of the multiscale features. The cultivar recognition is a more challenging problem, since the experts cannot distinguish evident differences in plain sight. However, we achieve acceptable classification results. We also analyze the feature relevance and identify, for each classifier, a small set of distinctive traits to differentiate the species and varieties
Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Baya, Ariel Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Craviotto, Roque Mario. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Arango, Miriam R.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Gallo, Carina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina - Materia
-
Image Classification
Image Analysis
Cultivars Recognition
Multiscale Vein Image - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/29718
Ver los metadatos del registro completo
id |
CONICETDig_d208b1cd449f59b1643ef7adec55a9c4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/29718 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multiscale recognition of legume varieties based on leaf venation imagesLarese, Monica GracielaBaya, Ariel EmilioCraviotto, Roque MarioArango, Miriam R.Gallo, CarinaGranitto, Pablo MiguelImage ClassificationImage AnalysisCultivars RecognitionMultiscale Vein Imagehttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this work we propose an automatic low cost procedure aimed at classifying legume species and varieties based exclusively on the characterization and analysis of the leaf venation network. The identification of leaf venation patterns which are characteristic for each species or variety is not an easy task since in some situations (specially for cultivars from the same species) the vein differences are visually indistinguishable for humans. The proposed procedure takes as input leaf images acquired using a standard scanner, processes the images in order to segment the veins at different scales, and measures different traits on them. We use these features in combination with modern automatic classifiers and feature selection techniques in order to perform recognition. The process was initially applied to recognize three different legumes in order to evaluate the improvements over previous works in the literature, and then it was employed to distinguish three diverse soybean cultivars. The results show the improvements achieved by the usage of the multiscale features. The cultivar recognition is a more challenging problem, since the experts cannot distinguish evident differences in plain sight. However, we achieve acceptable classification results. We also analyze the feature relevance and identify, for each classifier, a small set of distinctive traits to differentiate the species and varietiesFil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Baya, Ariel Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Craviotto, Roque Mario. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Arango, Miriam R.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Gallo, Carina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaPergamon-Elsevier Science Ltd.2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29718Larese, Monica Graciela; Baya, Ariel Emilio; Craviotto, Roque Mario; Arango, Miriam R.; Gallo, Carina; et al.; Multiscale recognition of legume varieties based on leaf venation images; Pergamon-Elsevier Science Ltd.; Expert Systems with Applications; 41; 10; 8-2014; 4638-46470957-4174CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2014.01.029info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417414000529info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:00:01Zoai:ri.conicet.gov.ar:11336/29718instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:00:02.053CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multiscale recognition of legume varieties based on leaf venation images |
title |
Multiscale recognition of legume varieties based on leaf venation images |
spellingShingle |
Multiscale recognition of legume varieties based on leaf venation images Larese, Monica Graciela Image Classification Image Analysis Cultivars Recognition Multiscale Vein Image |
title_short |
Multiscale recognition of legume varieties based on leaf venation images |
title_full |
Multiscale recognition of legume varieties based on leaf venation images |
title_fullStr |
Multiscale recognition of legume varieties based on leaf venation images |
title_full_unstemmed |
Multiscale recognition of legume varieties based on leaf venation images |
title_sort |
Multiscale recognition of legume varieties based on leaf venation images |
dc.creator.none.fl_str_mv |
Larese, Monica Graciela Baya, Ariel Emilio Craviotto, Roque Mario Arango, Miriam R. Gallo, Carina Granitto, Pablo Miguel |
author |
Larese, Monica Graciela |
author_facet |
Larese, Monica Graciela Baya, Ariel Emilio Craviotto, Roque Mario Arango, Miriam R. Gallo, Carina Granitto, Pablo Miguel |
author_role |
author |
author2 |
Baya, Ariel Emilio Craviotto, Roque Mario Arango, Miriam R. Gallo, Carina Granitto, Pablo Miguel |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Image Classification Image Analysis Cultivars Recognition Multiscale Vein Image |
topic |
Image Classification Image Analysis Cultivars Recognition Multiscale Vein Image |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work we propose an automatic low cost procedure aimed at classifying legume species and varieties based exclusively on the characterization and analysis of the leaf venation network. The identification of leaf venation patterns which are characteristic for each species or variety is not an easy task since in some situations (specially for cultivars from the same species) the vein differences are visually indistinguishable for humans. The proposed procedure takes as input leaf images acquired using a standard scanner, processes the images in order to segment the veins at different scales, and measures different traits on them. We use these features in combination with modern automatic classifiers and feature selection techniques in order to perform recognition. The process was initially applied to recognize three different legumes in order to evaluate the improvements over previous works in the literature, and then it was employed to distinguish three diverse soybean cultivars. The results show the improvements achieved by the usage of the multiscale features. The cultivar recognition is a more challenging problem, since the experts cannot distinguish evident differences in plain sight. However, we achieve acceptable classification results. We also analyze the feature relevance and identify, for each classifier, a small set of distinctive traits to differentiate the species and varieties Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina Fil: Baya, Ariel Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Craviotto, Roque Mario. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina Fil: Arango, Miriam R.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina Fil: Gallo, Carina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Oliveros; Argentina Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina |
description |
In this work we propose an automatic low cost procedure aimed at classifying legume species and varieties based exclusively on the characterization and analysis of the leaf venation network. The identification of leaf venation patterns which are characteristic for each species or variety is not an easy task since in some situations (specially for cultivars from the same species) the vein differences are visually indistinguishable for humans. The proposed procedure takes as input leaf images acquired using a standard scanner, processes the images in order to segment the veins at different scales, and measures different traits on them. We use these features in combination with modern automatic classifiers and feature selection techniques in order to perform recognition. The process was initially applied to recognize three different legumes in order to evaluate the improvements over previous works in the literature, and then it was employed to distinguish three diverse soybean cultivars. The results show the improvements achieved by the usage of the multiscale features. The cultivar recognition is a more challenging problem, since the experts cannot distinguish evident differences in plain sight. However, we achieve acceptable classification results. We also analyze the feature relevance and identify, for each classifier, a small set of distinctive traits to differentiate the species and varieties |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/29718 Larese, Monica Graciela; Baya, Ariel Emilio; Craviotto, Roque Mario; Arango, Miriam R.; Gallo, Carina; et al.; Multiscale recognition of legume varieties based on leaf venation images; Pergamon-Elsevier Science Ltd.; Expert Systems with Applications; 41; 10; 8-2014; 4638-4647 0957-4174 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/29718 |
identifier_str_mv |
Larese, Monica Graciela; Baya, Ariel Emilio; Craviotto, Roque Mario; Arango, Miriam R.; Gallo, Carina; et al.; Multiscale recognition of legume varieties based on leaf venation images; Pergamon-Elsevier Science Ltd.; Expert Systems with Applications; 41; 10; 8-2014; 4638-4647 0957-4174 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2014.01.029 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417414000529 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd. |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842979853533446144 |
score |
12.993085 |