Multiscale recognition of legume varieties based on leaf venation images

Autores
Larese, Monica Graciela; Baya, Ariel Emilio; Craviotto, Roque Mario; Arango, Miriam Raquel; Gallo, Carina Del Valle; Granitto, Pablo Miguel
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we propose an automatic low cost procedure aimed at classifying legume species and varieties based exclusively on the characterization and analysis of the leaf venation network. The identification of leaf venation patterns which are characteristic for each species or variety is not an easy task since in some situations (specially for cultivars from the same species) the vein differences are visually indistinguishable for humans. The proposed procedure takes as input leaf images acquired using a standard scanner, processes the images in order to segment the veins at different scales, and measures different traits on them. We use these features in combination with modern automatic classifiers and feature selection techniques in order to perform recognition. The process was initially applied to recognize three different legumes in order to evaluate the improvements over previous works in the literature, and then it was employed to distinguish three diverse soybean cultivars. The results show the improvements achieved by the usage of the multiscale features. The cultivar recognition is a more challenging problem, since the experts cannot distinguish evident differences in plain sight. However, we achieve acceptable classification results. We also analyze the feature relevance and identify, for each classifier, a small set of distinctive traits to differentiate the species and varieties.
EEA Oliveros
Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Baya, Ariel Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Craviotto, Roque Mario. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Arango, Miriam Raquel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Gallo, Carina Del Valle. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fuente
Expert systems with applications 41 (10) : 4638-4647 (August 2014)
Materia
Leguminosas
Variedades
Nervaduras Foliares
Análisis de Imágenes
Legumes
Varieties
Leaf Veins
Image Analysis
Nivel de accesibilidad
acceso restringido
Condiciones de uso
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/2511

id INTADig_45124be58b4c9e5f3a164ffe0bf0ec71
oai_identifier_str oai:localhost:20.500.12123/2511
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Multiscale recognition of legume varieties based on leaf venation imagesLarese, Monica GracielaBaya, Ariel EmilioCraviotto, Roque MarioArango, Miriam RaquelGallo, Carina Del ValleGranitto, Pablo MiguelLeguminosasVariedadesNervaduras FoliaresAnálisis de ImágenesLegumesVarietiesLeaf VeinsImage AnalysisIn this work we propose an automatic low cost procedure aimed at classifying legume species and varieties based exclusively on the characterization and analysis of the leaf venation network. The identification of leaf venation patterns which are characteristic for each species or variety is not an easy task since in some situations (specially for cultivars from the same species) the vein differences are visually indistinguishable for humans. The proposed procedure takes as input leaf images acquired using a standard scanner, processes the images in order to segment the veins at different scales, and measures different traits on them. We use these features in combination with modern automatic classifiers and feature selection techniques in order to perform recognition. The process was initially applied to recognize three different legumes in order to evaluate the improvements over previous works in the literature, and then it was employed to distinguish three diverse soybean cultivars. The results show the improvements achieved by the usage of the multiscale features. The cultivar recognition is a more challenging problem, since the experts cannot distinguish evident differences in plain sight. However, we achieve acceptable classification results. We also analyze the feature relevance and identify, for each classifier, a small set of distinctive traits to differentiate the species and varieties.EEA OliverosFil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Baya, Ariel Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Craviotto, Roque Mario. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Arango, Miriam Raquel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Gallo, Carina Del Valle. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina2018-05-30T11:47:47Z2018-05-30T11:47:47Z2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://www.sciencedirect.com/science/article/pii/S0957417414000529http://hdl.handle.net/20.500.12123/25110957-4174https://doi.org/10.1016/j.eswa.2014.01.029Expert systems with applications 41 (10) : 4638-4647 (August 2014)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-10-16T09:29:11Zoai:localhost:20.500.12123/2511instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:29:11.88INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Multiscale recognition of legume varieties based on leaf venation images
title Multiscale recognition of legume varieties based on leaf venation images
spellingShingle Multiscale recognition of legume varieties based on leaf venation images
Larese, Monica Graciela
Leguminosas
Variedades
Nervaduras Foliares
Análisis de Imágenes
Legumes
Varieties
Leaf Veins
Image Analysis
title_short Multiscale recognition of legume varieties based on leaf venation images
title_full Multiscale recognition of legume varieties based on leaf venation images
title_fullStr Multiscale recognition of legume varieties based on leaf venation images
title_full_unstemmed Multiscale recognition of legume varieties based on leaf venation images
title_sort Multiscale recognition of legume varieties based on leaf venation images
dc.creator.none.fl_str_mv Larese, Monica Graciela
Baya, Ariel Emilio
Craviotto, Roque Mario
Arango, Miriam Raquel
Gallo, Carina Del Valle
Granitto, Pablo Miguel
author Larese, Monica Graciela
author_facet Larese, Monica Graciela
Baya, Ariel Emilio
Craviotto, Roque Mario
Arango, Miriam Raquel
Gallo, Carina Del Valle
Granitto, Pablo Miguel
author_role author
author2 Baya, Ariel Emilio
Craviotto, Roque Mario
Arango, Miriam Raquel
Gallo, Carina Del Valle
Granitto, Pablo Miguel
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Leguminosas
Variedades
Nervaduras Foliares
Análisis de Imágenes
Legumes
Varieties
Leaf Veins
Image Analysis
topic Leguminosas
Variedades
Nervaduras Foliares
Análisis de Imágenes
Legumes
Varieties
Leaf Veins
Image Analysis
dc.description.none.fl_txt_mv In this work we propose an automatic low cost procedure aimed at classifying legume species and varieties based exclusively on the characterization and analysis of the leaf venation network. The identification of leaf venation patterns which are characteristic for each species or variety is not an easy task since in some situations (specially for cultivars from the same species) the vein differences are visually indistinguishable for humans. The proposed procedure takes as input leaf images acquired using a standard scanner, processes the images in order to segment the veins at different scales, and measures different traits on them. We use these features in combination with modern automatic classifiers and feature selection techniques in order to perform recognition. The process was initially applied to recognize three different legumes in order to evaluate the improvements over previous works in the literature, and then it was employed to distinguish three diverse soybean cultivars. The results show the improvements achieved by the usage of the multiscale features. The cultivar recognition is a more challenging problem, since the experts cannot distinguish evident differences in plain sight. However, we achieve acceptable classification results. We also analyze the feature relevance and identify, for each classifier, a small set of distinctive traits to differentiate the species and varieties.
EEA Oliveros
Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Baya, Ariel Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Craviotto, Roque Mario. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Arango, Miriam Raquel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Gallo, Carina Del Valle. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
description In this work we propose an automatic low cost procedure aimed at classifying legume species and varieties based exclusively on the characterization and analysis of the leaf venation network. The identification of leaf venation patterns which are characteristic for each species or variety is not an easy task since in some situations (specially for cultivars from the same species) the vein differences are visually indistinguishable for humans. The proposed procedure takes as input leaf images acquired using a standard scanner, processes the images in order to segment the veins at different scales, and measures different traits on them. We use these features in combination with modern automatic classifiers and feature selection techniques in order to perform recognition. The process was initially applied to recognize three different legumes in order to evaluate the improvements over previous works in the literature, and then it was employed to distinguish three diverse soybean cultivars. The results show the improvements achieved by the usage of the multiscale features. The cultivar recognition is a more challenging problem, since the experts cannot distinguish evident differences in plain sight. However, we achieve acceptable classification results. We also analyze the feature relevance and identify, for each classifier, a small set of distinctive traits to differentiate the species and varieties.
publishDate 2014
dc.date.none.fl_str_mv 2014-08
2018-05-30T11:47:47Z
2018-05-30T11:47:47Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0957417414000529
http://hdl.handle.net/20.500.12123/2511
0957-4174
https://doi.org/10.1016/j.eswa.2014.01.029
url https://www.sciencedirect.com/science/article/pii/S0957417414000529
http://hdl.handle.net/20.500.12123/2511
https://doi.org/10.1016/j.eswa.2014.01.029
identifier_str_mv 0957-4174
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Expert systems with applications 41 (10) : 4638-4647 (August 2014)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1846143501166706688
score 12.712165