Multiscale recognition of legume varieties based on leaf venation images
- Autores
- Larese, Monica Graciela; Baya, Ariel Emilio; Craviotto, Roque Mario; Arango, Miriam Raquel; Gallo, Carina Del Valle; Granitto, Pablo Miguel
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we propose an automatic low cost procedure aimed at classifying legume species and varieties based exclusively on the characterization and analysis of the leaf venation network. The identification of leaf venation patterns which are characteristic for each species or variety is not an easy task since in some situations (specially for cultivars from the same species) the vein differences are visually indistinguishable for humans. The proposed procedure takes as input leaf images acquired using a standard scanner, processes the images in order to segment the veins at different scales, and measures different traits on them. We use these features in combination with modern automatic classifiers and feature selection techniques in order to perform recognition. The process was initially applied to recognize three different legumes in order to evaluate the improvements over previous works in the literature, and then it was employed to distinguish three diverse soybean cultivars. The results show the improvements achieved by the usage of the multiscale features. The cultivar recognition is a more challenging problem, since the experts cannot distinguish evident differences in plain sight. However, we achieve acceptable classification results. We also analyze the feature relevance and identify, for each classifier, a small set of distinctive traits to differentiate the species and varieties.
EEA Oliveros
Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Baya, Ariel Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Craviotto, Roque Mario. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Arango, Miriam Raquel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Gallo, Carina Del Valle. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina - Fuente
- Expert systems with applications 41 (10) : 4638-4647 (August 2014)
- Materia
-
Leguminosas
Variedades
Nervaduras Foliares
Análisis de Imágenes
Legumes
Varieties
Leaf Veins
Image Analysis - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- Repositorio
.jpg)
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/2511
Ver los metadatos del registro completo
| id |
INTADig_45124be58b4c9e5f3a164ffe0bf0ec71 |
|---|---|
| oai_identifier_str |
oai:localhost:20.500.12123/2511 |
| network_acronym_str |
INTADig |
| repository_id_str |
l |
| network_name_str |
INTA Digital (INTA) |
| spelling |
Multiscale recognition of legume varieties based on leaf venation imagesLarese, Monica GracielaBaya, Ariel EmilioCraviotto, Roque MarioArango, Miriam RaquelGallo, Carina Del ValleGranitto, Pablo MiguelLeguminosasVariedadesNervaduras FoliaresAnálisis de ImágenesLegumesVarietiesLeaf VeinsImage AnalysisIn this work we propose an automatic low cost procedure aimed at classifying legume species and varieties based exclusively on the characterization and analysis of the leaf venation network. The identification of leaf venation patterns which are characteristic for each species or variety is not an easy task since in some situations (specially for cultivars from the same species) the vein differences are visually indistinguishable for humans. The proposed procedure takes as input leaf images acquired using a standard scanner, processes the images in order to segment the veins at different scales, and measures different traits on them. We use these features in combination with modern automatic classifiers and feature selection techniques in order to perform recognition. The process was initially applied to recognize three different legumes in order to evaluate the improvements over previous works in the literature, and then it was employed to distinguish three diverse soybean cultivars. The results show the improvements achieved by the usage of the multiscale features. The cultivar recognition is a more challenging problem, since the experts cannot distinguish evident differences in plain sight. However, we achieve acceptable classification results. We also analyze the feature relevance and identify, for each classifier, a small set of distinctive traits to differentiate the species and varieties.EEA OliverosFil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Baya, Ariel Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Craviotto, Roque Mario. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Arango, Miriam Raquel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Gallo, Carina Del Valle. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina2018-05-30T11:47:47Z2018-05-30T11:47:47Z2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://www.sciencedirect.com/science/article/pii/S0957417414000529http://hdl.handle.net/20.500.12123/25110957-4174https://doi.org/10.1016/j.eswa.2014.01.029Expert systems with applications 41 (10) : 4638-4647 (August 2014)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-10-16T09:29:11Zoai:localhost:20.500.12123/2511instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:29:11.88INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
| dc.title.none.fl_str_mv |
Multiscale recognition of legume varieties based on leaf venation images |
| title |
Multiscale recognition of legume varieties based on leaf venation images |
| spellingShingle |
Multiscale recognition of legume varieties based on leaf venation images Larese, Monica Graciela Leguminosas Variedades Nervaduras Foliares Análisis de Imágenes Legumes Varieties Leaf Veins Image Analysis |
| title_short |
Multiscale recognition of legume varieties based on leaf venation images |
| title_full |
Multiscale recognition of legume varieties based on leaf venation images |
| title_fullStr |
Multiscale recognition of legume varieties based on leaf venation images |
| title_full_unstemmed |
Multiscale recognition of legume varieties based on leaf venation images |
| title_sort |
Multiscale recognition of legume varieties based on leaf venation images |
| dc.creator.none.fl_str_mv |
Larese, Monica Graciela Baya, Ariel Emilio Craviotto, Roque Mario Arango, Miriam Raquel Gallo, Carina Del Valle Granitto, Pablo Miguel |
| author |
Larese, Monica Graciela |
| author_facet |
Larese, Monica Graciela Baya, Ariel Emilio Craviotto, Roque Mario Arango, Miriam Raquel Gallo, Carina Del Valle Granitto, Pablo Miguel |
| author_role |
author |
| author2 |
Baya, Ariel Emilio Craviotto, Roque Mario Arango, Miriam Raquel Gallo, Carina Del Valle Granitto, Pablo Miguel |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
Leguminosas Variedades Nervaduras Foliares Análisis de Imágenes Legumes Varieties Leaf Veins Image Analysis |
| topic |
Leguminosas Variedades Nervaduras Foliares Análisis de Imágenes Legumes Varieties Leaf Veins Image Analysis |
| dc.description.none.fl_txt_mv |
In this work we propose an automatic low cost procedure aimed at classifying legume species and varieties based exclusively on the characterization and analysis of the leaf venation network. The identification of leaf venation patterns which are characteristic for each species or variety is not an easy task since in some situations (specially for cultivars from the same species) the vein differences are visually indistinguishable for humans. The proposed procedure takes as input leaf images acquired using a standard scanner, processes the images in order to segment the veins at different scales, and measures different traits on them. We use these features in combination with modern automatic classifiers and feature selection techniques in order to perform recognition. The process was initially applied to recognize three different legumes in order to evaluate the improvements over previous works in the literature, and then it was employed to distinguish three diverse soybean cultivars. The results show the improvements achieved by the usage of the multiscale features. The cultivar recognition is a more challenging problem, since the experts cannot distinguish evident differences in plain sight. However, we achieve acceptable classification results. We also analyze the feature relevance and identify, for each classifier, a small set of distinctive traits to differentiate the species and varieties. EEA Oliveros Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina Fil: Baya, Ariel Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Craviotto, Roque Mario. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina Fil: Arango, Miriam Raquel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina Fil: Gallo, Carina Del Valle. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina |
| description |
In this work we propose an automatic low cost procedure aimed at classifying legume species and varieties based exclusively on the characterization and analysis of the leaf venation network. The identification of leaf venation patterns which are characteristic for each species or variety is not an easy task since in some situations (specially for cultivars from the same species) the vein differences are visually indistinguishable for humans. The proposed procedure takes as input leaf images acquired using a standard scanner, processes the images in order to segment the veins at different scales, and measures different traits on them. We use these features in combination with modern automatic classifiers and feature selection techniques in order to perform recognition. The process was initially applied to recognize three different legumes in order to evaluate the improvements over previous works in the literature, and then it was employed to distinguish three diverse soybean cultivars. The results show the improvements achieved by the usage of the multiscale features. The cultivar recognition is a more challenging problem, since the experts cannot distinguish evident differences in plain sight. However, we achieve acceptable classification results. We also analyze the feature relevance and identify, for each classifier, a small set of distinctive traits to differentiate the species and varieties. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-08 2018-05-30T11:47:47Z 2018-05-30T11:47:47Z |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0957417414000529 http://hdl.handle.net/20.500.12123/2511 0957-4174 https://doi.org/10.1016/j.eswa.2014.01.029 |
| url |
https://www.sciencedirect.com/science/article/pii/S0957417414000529 http://hdl.handle.net/20.500.12123/2511 https://doi.org/10.1016/j.eswa.2014.01.029 |
| identifier_str_mv |
0957-4174 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
| eu_rights_str_mv |
restrictedAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
Expert systems with applications 41 (10) : 4638-4647 (August 2014) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
| reponame_str |
INTA Digital (INTA) |
| collection |
INTA Digital (INTA) |
| instname_str |
Instituto Nacional de Tecnología Agropecuaria |
| repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
| repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
| _version_ |
1846143501166706688 |
| score |
12.712165 |