Automatic classification of legumes using leaf vein image features

Autores
Larese, Monica Graciela; Namias, Rafael; Craviotto, Roque Mario; Arango, Miriam Raquel; Gallo, Carina Del Valle; Granitto, Pablo Miguel
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, a procedure for segmenting and classifying scanned legume leaves based only on the analysis of their veins is proposed (leaf shape, size, texture and color are discarded). Three legume species are studied, namely soybean, red and white beans. The leaf images are acquired using a standard scanner. The segmentation is performed using the unconstrained hit-or-miss transform and adaptive thresholding. Several morphological features are computed on the segmented venation, and classified using four alternative classifiers, namely support vector machines (linear and Gaussian kernels), penalized discriminant analysis and random forests. The performance is compared to the one obtained with cleared leaves images, which require a more expensive, time consuming and delicate procedure of acquisition. The results are encouraging, showing that the proposed approach is an effective and more economic alternative solution which outperforms the manual expert's recognition.
EEA Oliveros
Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Namias, Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Craviotto, Roque Mario. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Arango, Miriam Raquel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Gallo, Carina Del Valle. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fuente
Pattern recognition 47 (1) : 158-168. (January 2014)
Materia
Leguminosas
Nervaduras Foliares
Análisis de Imágenes
Legumes
Leaf Veins
Image Analysis
Nivel de accesibilidad
acceso restringido
Condiciones de uso
Repositorio
INTA Digital (INTA)
Institución
Instituto Nacional de Tecnología Agropecuaria
OAI Identificador
oai:localhost:20.500.12123/2512

id INTADig_5a8713e528b201b1e620e208d143c634
oai_identifier_str oai:localhost:20.500.12123/2512
network_acronym_str INTADig
repository_id_str l
network_name_str INTA Digital (INTA)
spelling Automatic classification of legumes using leaf vein image featuresLarese, Monica GracielaNamias, RafaelCraviotto, Roque MarioArango, Miriam RaquelGallo, Carina Del ValleGranitto, Pablo MiguelLeguminosasNervaduras FoliaresAnálisis de ImágenesLegumesLeaf VeinsImage AnalysisIn this paper, a procedure for segmenting and classifying scanned legume leaves based only on the analysis of their veins is proposed (leaf shape, size, texture and color are discarded). Three legume species are studied, namely soybean, red and white beans. The leaf images are acquired using a standard scanner. The segmentation is performed using the unconstrained hit-or-miss transform and adaptive thresholding. Several morphological features are computed on the segmented venation, and classified using four alternative classifiers, namely support vector machines (linear and Gaussian kernels), penalized discriminant analysis and random forests. The performance is compared to the one obtained with cleared leaves images, which require a more expensive, time consuming and delicate procedure of acquisition. The results are encouraging, showing that the proposed approach is an effective and more economic alternative solution which outperforms the manual expert's recognition.EEA OliverosFil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Namias, Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Craviotto, Roque Mario. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Arango, Miriam Raquel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Gallo, Carina Del Valle. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; ArgentinaFil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina2018-05-30T12:08:08Z2018-05-30T12:08:08Z2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://www.sciencedirect.com/science/article/pii/S0031320313002641http://hdl.handle.net/20.500.12123/25120031-3203https://doi.org/10.1016/j.patcog.2013.06.012Pattern recognition 47 (1) : 158-168. (January 2014)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/restrictedAccess2025-10-16T09:29:11Zoai:localhost:20.500.12123/2512instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-10-16 09:29:11.883INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse
dc.title.none.fl_str_mv Automatic classification of legumes using leaf vein image features
title Automatic classification of legumes using leaf vein image features
spellingShingle Automatic classification of legumes using leaf vein image features
Larese, Monica Graciela
Leguminosas
Nervaduras Foliares
Análisis de Imágenes
Legumes
Leaf Veins
Image Analysis
title_short Automatic classification of legumes using leaf vein image features
title_full Automatic classification of legumes using leaf vein image features
title_fullStr Automatic classification of legumes using leaf vein image features
title_full_unstemmed Automatic classification of legumes using leaf vein image features
title_sort Automatic classification of legumes using leaf vein image features
dc.creator.none.fl_str_mv Larese, Monica Graciela
Namias, Rafael
Craviotto, Roque Mario
Arango, Miriam Raquel
Gallo, Carina Del Valle
Granitto, Pablo Miguel
author Larese, Monica Graciela
author_facet Larese, Monica Graciela
Namias, Rafael
Craviotto, Roque Mario
Arango, Miriam Raquel
Gallo, Carina Del Valle
Granitto, Pablo Miguel
author_role author
author2 Namias, Rafael
Craviotto, Roque Mario
Arango, Miriam Raquel
Gallo, Carina Del Valle
Granitto, Pablo Miguel
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Leguminosas
Nervaduras Foliares
Análisis de Imágenes
Legumes
Leaf Veins
Image Analysis
topic Leguminosas
Nervaduras Foliares
Análisis de Imágenes
Legumes
Leaf Veins
Image Analysis
dc.description.none.fl_txt_mv In this paper, a procedure for segmenting and classifying scanned legume leaves based only on the analysis of their veins is proposed (leaf shape, size, texture and color are discarded). Three legume species are studied, namely soybean, red and white beans. The leaf images are acquired using a standard scanner. The segmentation is performed using the unconstrained hit-or-miss transform and adaptive thresholding. Several morphological features are computed on the segmented venation, and classified using four alternative classifiers, namely support vector machines (linear and Gaussian kernels), penalized discriminant analysis and random forests. The performance is compared to the one obtained with cleared leaves images, which require a more expensive, time consuming and delicate procedure of acquisition. The results are encouraging, showing that the proposed approach is an effective and more economic alternative solution which outperforms the manual expert's recognition.
EEA Oliveros
Fil: Larese, Monica Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Namias, Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Craviotto, Roque Mario. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Arango, Miriam Raquel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Gallo, Carina Del Valle. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Oliveros; Argentina
Fil: Granitto, Pablo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
description In this paper, a procedure for segmenting and classifying scanned legume leaves based only on the analysis of their veins is proposed (leaf shape, size, texture and color are discarded). Three legume species are studied, namely soybean, red and white beans. The leaf images are acquired using a standard scanner. The segmentation is performed using the unconstrained hit-or-miss transform and adaptive thresholding. Several morphological features are computed on the segmented venation, and classified using four alternative classifiers, namely support vector machines (linear and Gaussian kernels), penalized discriminant analysis and random forests. The performance is compared to the one obtained with cleared leaves images, which require a more expensive, time consuming and delicate procedure of acquisition. The results are encouraging, showing that the proposed approach is an effective and more economic alternative solution which outperforms the manual expert's recognition.
publishDate 2014
dc.date.none.fl_str_mv 2014-01
2018-05-30T12:08:08Z
2018-05-30T12:08:08Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0031320313002641
http://hdl.handle.net/20.500.12123/2512
0031-3203
https://doi.org/10.1016/j.patcog.2013.06.012
url https://www.sciencedirect.com/science/article/pii/S0031320313002641
http://hdl.handle.net/20.500.12123/2512
https://doi.org/10.1016/j.patcog.2013.06.012
identifier_str_mv 0031-3203
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Pattern recognition 47 (1) : 158-168. (January 2014)
reponame:INTA Digital (INTA)
instname:Instituto Nacional de Tecnología Agropecuaria
reponame_str INTA Digital (INTA)
collection INTA Digital (INTA)
instname_str Instituto Nacional de Tecnología Agropecuaria
repository.name.fl_str_mv INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria
repository.mail.fl_str_mv tripaldi.nicolas@inta.gob.ar
_version_ 1846143501168803840
score 12.712165