The analog data assimilation
- Autores
- Lguensat, Redouane; Tandeo, Pierre; Ailliot, Pierre; Pulido, Manuel Arturo; Fablet, Ronan
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In light of growing interest in data-driven methods for oceanic, atmospheric, and climate sciences, this work focuses on the field of data assimilation and presents the analog data assimilation (AnDA). The proposed framework produces a reconstruction of the system dynamics in a fully data-driven manner where no explicit knowledge of the dynamical model is required. Instead, a representative catalog of trajectories of the system is assumed to be available. Based on this catalog, the analog data assimilation combines the nonparametric sampling of the dynamics using analog forecasting methods with ensemble-based assimilation techniques. This study explores different analog forecasting strategies and derives both ensemble Kalman and particle filtering versions of the proposed analog data assimilation approach. Numerical experiments are examined for two chaotic dynamical systems: the Lorenz-63 and Lorenz-96 systems. The performance of the analog data assimilation is discussed with respect to classical model-driven assimilation. A Matlab toolbox and Python library of the AnDA are provided to help further research building upon the present findings.
Fil: Lguensat, Redouane. Université Bretagne Loire; Francia
Fil: Tandeo, Pierre. Université Bretagne Loire; Francia
Fil: Ailliot, Pierre. University of Western Brittany. Laboratoire de Mathématiques de Bretagne Atlantique; Francia
Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
Fil: Fablet, Ronan. Université Bretagne Loire; Francia - Materia
-
DATA ASSIMILATION
ENSEMBLES
KALMAN FILTERS
STATISTICAL FORECASTING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/44461
Ver los metadatos del registro completo
id |
CONICETDig_c30b3e7be3b5b42bf0b1ac6650a094c8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/44461 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The analog data assimilationLguensat, RedouaneTandeo, PierreAilliot, PierrePulido, Manuel ArturoFablet, RonanDATA ASSIMILATIONENSEMBLESKALMAN FILTERSSTATISTICAL FORECASTINGhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1In light of growing interest in data-driven methods for oceanic, atmospheric, and climate sciences, this work focuses on the field of data assimilation and presents the analog data assimilation (AnDA). The proposed framework produces a reconstruction of the system dynamics in a fully data-driven manner where no explicit knowledge of the dynamical model is required. Instead, a representative catalog of trajectories of the system is assumed to be available. Based on this catalog, the analog data assimilation combines the nonparametric sampling of the dynamics using analog forecasting methods with ensemble-based assimilation techniques. This study explores different analog forecasting strategies and derives both ensemble Kalman and particle filtering versions of the proposed analog data assimilation approach. Numerical experiments are examined for two chaotic dynamical systems: the Lorenz-63 and Lorenz-96 systems. The performance of the analog data assimilation is discussed with respect to classical model-driven assimilation. A Matlab toolbox and Python library of the AnDA are provided to help further research building upon the present findings.Fil: Lguensat, Redouane. Université Bretagne Loire; FranciaFil: Tandeo, Pierre. Université Bretagne Loire; FranciaFil: Ailliot, Pierre. University of Western Brittany. Laboratoire de Mathématiques de Bretagne Atlantique; FranciaFil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaFil: Fablet, Ronan. Université Bretagne Loire; FranciaAmerican Meteorological Society2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/mswordapplication/pdfhttp://hdl.handle.net/11336/44461Lguensat, Redouane; Tandeo, Pierre; Ailliot, Pierre; Pulido, Manuel Arturo; Fablet, Ronan; The analog data assimilation; American Meteorological Society; Monthly Energy Review; 145; 10; 10-2017; 4093-41070027-06441520-0493CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1175/MWR-D-16-0441.1info:eu-repo/semantics/altIdentifier/url/https://journals.ametsoc.org/doi/10.1175/MWR-D-16-0441.1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:38Zoai:ri.conicet.gov.ar:11336/44461instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:38.903CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The analog data assimilation |
title |
The analog data assimilation |
spellingShingle |
The analog data assimilation Lguensat, Redouane DATA ASSIMILATION ENSEMBLES KALMAN FILTERS STATISTICAL FORECASTING |
title_short |
The analog data assimilation |
title_full |
The analog data assimilation |
title_fullStr |
The analog data assimilation |
title_full_unstemmed |
The analog data assimilation |
title_sort |
The analog data assimilation |
dc.creator.none.fl_str_mv |
Lguensat, Redouane Tandeo, Pierre Ailliot, Pierre Pulido, Manuel Arturo Fablet, Ronan |
author |
Lguensat, Redouane |
author_facet |
Lguensat, Redouane Tandeo, Pierre Ailliot, Pierre Pulido, Manuel Arturo Fablet, Ronan |
author_role |
author |
author2 |
Tandeo, Pierre Ailliot, Pierre Pulido, Manuel Arturo Fablet, Ronan |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
DATA ASSIMILATION ENSEMBLES KALMAN FILTERS STATISTICAL FORECASTING |
topic |
DATA ASSIMILATION ENSEMBLES KALMAN FILTERS STATISTICAL FORECASTING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In light of growing interest in data-driven methods for oceanic, atmospheric, and climate sciences, this work focuses on the field of data assimilation and presents the analog data assimilation (AnDA). The proposed framework produces a reconstruction of the system dynamics in a fully data-driven manner where no explicit knowledge of the dynamical model is required. Instead, a representative catalog of trajectories of the system is assumed to be available. Based on this catalog, the analog data assimilation combines the nonparametric sampling of the dynamics using analog forecasting methods with ensemble-based assimilation techniques. This study explores different analog forecasting strategies and derives both ensemble Kalman and particle filtering versions of the proposed analog data assimilation approach. Numerical experiments are examined for two chaotic dynamical systems: the Lorenz-63 and Lorenz-96 systems. The performance of the analog data assimilation is discussed with respect to classical model-driven assimilation. A Matlab toolbox and Python library of the AnDA are provided to help further research building upon the present findings. Fil: Lguensat, Redouane. Université Bretagne Loire; Francia Fil: Tandeo, Pierre. Université Bretagne Loire; Francia Fil: Ailliot, Pierre. University of Western Brittany. Laboratoire de Mathématiques de Bretagne Atlantique; Francia Fil: Pulido, Manuel Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina Fil: Fablet, Ronan. Université Bretagne Loire; Francia |
description |
In light of growing interest in data-driven methods for oceanic, atmospheric, and climate sciences, this work focuses on the field of data assimilation and presents the analog data assimilation (AnDA). The proposed framework produces a reconstruction of the system dynamics in a fully data-driven manner where no explicit knowledge of the dynamical model is required. Instead, a representative catalog of trajectories of the system is assumed to be available. Based on this catalog, the analog data assimilation combines the nonparametric sampling of the dynamics using analog forecasting methods with ensemble-based assimilation techniques. This study explores different analog forecasting strategies and derives both ensemble Kalman and particle filtering versions of the proposed analog data assimilation approach. Numerical experiments are examined for two chaotic dynamical systems: the Lorenz-63 and Lorenz-96 systems. The performance of the analog data assimilation is discussed with respect to classical model-driven assimilation. A Matlab toolbox and Python library of the AnDA are provided to help further research building upon the present findings. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/44461 Lguensat, Redouane; Tandeo, Pierre; Ailliot, Pierre; Pulido, Manuel Arturo; Fablet, Ronan; The analog data assimilation; American Meteorological Society; Monthly Energy Review; 145; 10; 10-2017; 4093-4107 0027-0644 1520-0493 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/44461 |
identifier_str_mv |
Lguensat, Redouane; Tandeo, Pierre; Ailliot, Pierre; Pulido, Manuel Arturo; Fablet, Ronan; The analog data assimilation; American Meteorological Society; Monthly Energy Review; 145; 10; 10-2017; 4093-4107 0027-0644 1520-0493 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1175/MWR-D-16-0441.1 info:eu-repo/semantics/altIdentifier/url/https://journals.ametsoc.org/doi/10.1175/MWR-D-16-0441.1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/msword application/pdf |
dc.publisher.none.fl_str_mv |
American Meteorological Society |
publisher.none.fl_str_mv |
American Meteorological Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269811898318848 |
score |
13.13397 |