The ability of a multi-model seasonal forecasting ensemble to forecast the frequency of warm, cold and wet extremes
- Autores
- Pepler, Acacia S.; Díaz, Leandro Baltasar; Prodhomme, Chloé; Doblas Reyes, Francisco J.; Kumar, Arun
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Dynamical models are now widely used to provide forecasts of above or below average seasonal mean temperatures and precipitation, with growing interest in their ability to forecast climate extremes on a seasonal time scale. This study assesses the skill of the ENSEMBLES multi-model ensemble to forecast the 90th and 10th percentiles of both seasonal temperature and precipitation, using a number of metrics of ‘extremeness’. Skill is generally similar or slightly lower to that for seasonal means, with skill strongly influenced by the El Niño-Southern Oscillation. As documented in previous studies, much of the skill in forecasting extremes can be related to skill in forecasting the seasonal mean value, with skill for extremes generally lower although still significant. Despite this, little relationship is found between the skill of forecasting the upper and lower tails of the distribution of daily values.
Fil: Pepler, Acacia S.. University Of New South Wales; Australia
Fil: Díaz, Leandro Baltasar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; Argentina
Fil: Prodhomme, Chloé. Institut Català de Ciències del Clima; España
Fil: Doblas Reyes, Francisco J.. Institut Català de Ciències del Clima; España. Institució Catalana de Recerca i Estudis Avancats; España. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; España
Fil: Kumar, Arun. National Oceanic and Atmospheric Administration; Estados Unidos - Materia
-
Extremes
Seasonal forecasting
ENSO
Climate model
Ensemble - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/17818
Ver los metadatos del registro completo
id |
CONICETDig_3e067a8c013d2ffe2c4d65a87ca09a11 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/17818 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The ability of a multi-model seasonal forecasting ensemble to forecast the frequency of warm, cold and wet extremesPepler, Acacia S.Díaz, Leandro BaltasarProdhomme, ChloéDoblas Reyes, Francisco J.Kumar, ArunExtremesSeasonal forecastingENSOClimate modelEnsemblehttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Dynamical models are now widely used to provide forecasts of above or below average seasonal mean temperatures and precipitation, with growing interest in their ability to forecast climate extremes on a seasonal time scale. This study assesses the skill of the ENSEMBLES multi-model ensemble to forecast the 90th and 10th percentiles of both seasonal temperature and precipitation, using a number of metrics of ‘extremeness’. Skill is generally similar or slightly lower to that for seasonal means, with skill strongly influenced by the El Niño-Southern Oscillation. As documented in previous studies, much of the skill in forecasting extremes can be related to skill in forecasting the seasonal mean value, with skill for extremes generally lower although still significant. Despite this, little relationship is found between the skill of forecasting the upper and lower tails of the distribution of daily values.Fil: Pepler, Acacia S.. University Of New South Wales; AustraliaFil: Díaz, Leandro Baltasar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; ArgentinaFil: Prodhomme, Chloé. Institut Català de Ciències del Clima; EspañaFil: Doblas Reyes, Francisco J.. Institut Català de Ciències del Clima; España. Institució Catalana de Recerca i Estudis Avancats; España. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; EspañaFil: Kumar, Arun. National Oceanic and Atmospheric Administration; Estados UnidosElsevier Science2015-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17818Pepler, Acacia S.; Díaz, Leandro Baltasar; Prodhomme, Chloé; Doblas Reyes, Francisco J.; Kumar, Arun; The ability of a multi-model seasonal forecasting ensemble to forecast the frequency of warm, cold and wet extremes; Elsevier Science; Weather and Climate Extremes; 9; 9-2015; 68-772212-0947enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.wace.2015.06.005info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S2212094715300062info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:21Zoai:ri.conicet.gov.ar:11336/17818instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:21.929CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The ability of a multi-model seasonal forecasting ensemble to forecast the frequency of warm, cold and wet extremes |
title |
The ability of a multi-model seasonal forecasting ensemble to forecast the frequency of warm, cold and wet extremes |
spellingShingle |
The ability of a multi-model seasonal forecasting ensemble to forecast the frequency of warm, cold and wet extremes Pepler, Acacia S. Extremes Seasonal forecasting ENSO Climate model Ensemble |
title_short |
The ability of a multi-model seasonal forecasting ensemble to forecast the frequency of warm, cold and wet extremes |
title_full |
The ability of a multi-model seasonal forecasting ensemble to forecast the frequency of warm, cold and wet extremes |
title_fullStr |
The ability of a multi-model seasonal forecasting ensemble to forecast the frequency of warm, cold and wet extremes |
title_full_unstemmed |
The ability of a multi-model seasonal forecasting ensemble to forecast the frequency of warm, cold and wet extremes |
title_sort |
The ability of a multi-model seasonal forecasting ensemble to forecast the frequency of warm, cold and wet extremes |
dc.creator.none.fl_str_mv |
Pepler, Acacia S. Díaz, Leandro Baltasar Prodhomme, Chloé Doblas Reyes, Francisco J. Kumar, Arun |
author |
Pepler, Acacia S. |
author_facet |
Pepler, Acacia S. Díaz, Leandro Baltasar Prodhomme, Chloé Doblas Reyes, Francisco J. Kumar, Arun |
author_role |
author |
author2 |
Díaz, Leandro Baltasar Prodhomme, Chloé Doblas Reyes, Francisco J. Kumar, Arun |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Extremes Seasonal forecasting ENSO Climate model Ensemble |
topic |
Extremes Seasonal forecasting ENSO Climate model Ensemble |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Dynamical models are now widely used to provide forecasts of above or below average seasonal mean temperatures and precipitation, with growing interest in their ability to forecast climate extremes on a seasonal time scale. This study assesses the skill of the ENSEMBLES multi-model ensemble to forecast the 90th and 10th percentiles of both seasonal temperature and precipitation, using a number of metrics of ‘extremeness’. Skill is generally similar or slightly lower to that for seasonal means, with skill strongly influenced by the El Niño-Southern Oscillation. As documented in previous studies, much of the skill in forecasting extremes can be related to skill in forecasting the seasonal mean value, with skill for extremes generally lower although still significant. Despite this, little relationship is found between the skill of forecasting the upper and lower tails of the distribution of daily values. Fil: Pepler, Acacia S.. University Of New South Wales; Australia Fil: Díaz, Leandro Baltasar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmosfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmosfera; Argentina Fil: Prodhomme, Chloé. Institut Català de Ciències del Clima; España Fil: Doblas Reyes, Francisco J.. Institut Català de Ciències del Clima; España. Institució Catalana de Recerca i Estudis Avancats; España. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; España Fil: Kumar, Arun. National Oceanic and Atmospheric Administration; Estados Unidos |
description |
Dynamical models are now widely used to provide forecasts of above or below average seasonal mean temperatures and precipitation, with growing interest in their ability to forecast climate extremes on a seasonal time scale. This study assesses the skill of the ENSEMBLES multi-model ensemble to forecast the 90th and 10th percentiles of both seasonal temperature and precipitation, using a number of metrics of ‘extremeness’. Skill is generally similar or slightly lower to that for seasonal means, with skill strongly influenced by the El Niño-Southern Oscillation. As documented in previous studies, much of the skill in forecasting extremes can be related to skill in forecasting the seasonal mean value, with skill for extremes generally lower although still significant. Despite this, little relationship is found between the skill of forecasting the upper and lower tails of the distribution of daily values. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/17818 Pepler, Acacia S.; Díaz, Leandro Baltasar; Prodhomme, Chloé; Doblas Reyes, Francisco J.; Kumar, Arun; The ability of a multi-model seasonal forecasting ensemble to forecast the frequency of warm, cold and wet extremes; Elsevier Science; Weather and Climate Extremes; 9; 9-2015; 68-77 2212-0947 |
url |
http://hdl.handle.net/11336/17818 |
identifier_str_mv |
Pepler, Acacia S.; Díaz, Leandro Baltasar; Prodhomme, Chloé; Doblas Reyes, Francisco J.; Kumar, Arun; The ability of a multi-model seasonal forecasting ensemble to forecast the frequency of warm, cold and wet extremes; Elsevier Science; Weather and Climate Extremes; 9; 9-2015; 68-77 2212-0947 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.wace.2015.06.005 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S2212094715300062 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268854005268480 |
score |
13.13397 |