Application of the WRF-LETKF Data Assimilation System over Southern South America: Sensitivity to Model Physics

Autores
Dillon, María Eugenia; Garcia Skabar, Yanina; Ruiz, Juan Jose; Kalnay, Eugenia; Collini, Estela Angela; Echevarria, Pablo; Saucedo, Marcos Adolfo; Miyoshi, Takemasa; Kunii, Masaru
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Improving the initial conditions of short-range numerical weather prediction (NWP) models is one of the main goals of the meteorological community. Development of data assimilation and ensemble forecast systems is essential in any national weather service (NWS). In this sense, the local ensemble transform Kalman filter (LETKF) is a methodology that can satisfy both requirements in an efficient manner. The Weather Research and Forecasting (WRF) Model coupled with the LETKF, developed at the University of Maryland, College Park, have been implemented experimentally at the NWS of Argentina [Servicio Meteorológico Nacional (SMN)], but at a somewhat lower resolution (40 km) than the operational Global Forecast System (GFS) at that time (27 km). The purpose of this work is not to show that the system presented herein is better than the higher-resolution GFS, but that its performance is reasonably comparable, and to provide the basis for a continued improved development of an independent regional data assimilation and forecasting system. The WRF-LETKF system is tested during the spring of 2012, using the prepared or quality controlled data in Binary Universal Form for Representation of Meteorological Data (PREPBUFR) observations from the National Centers for Environmental Prediction (NCEP) and lateral boundary conditions from the GFS. To assess the effect of model error, a single-model LETKF system (LETKF-single) is compared with a multischeme implementation (LETKF-multi), which uses different boundary layer and cumulus convection schemes for the generation of the ensemble of forecasts. The performance of both experiments during the test period shows that the LETKF-multi usually outperforms the LETKF-single, evidencing the advantages of the use of the multischeme approach. Both data assimilation systems are slightly worse than the GFS in terms of the synoptic environment representation, as could be expected given their lower resolution. Results from a case study of a strong convective system suggest that the LETKF-multi improves the location of the most intense area of precipitation with respect to the LETKF-single, although both systems show an underestimation of the total accumulated precipitation. These preliminary results encourage continuing the development of an operational data assimilation system based on WRF-LETKF at the SMN.
Fil: Dillon, María Eugenia. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Garcia Skabar, Yanina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Kalnay, Eugenia. University of Maryland; Estados Unidos
Fil: Collini, Estela Angela. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina
Fil: Echevarria, Pablo. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina
Fil: Saucedo, Marcos Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Miyoshi, Takemasa. RIKEN Advanced Institute for Computational Science; Japón
Fil: Kunii, Masaru. RIKEN Advanced Institute for Computational Science; Japón
Materia
Mathematical And Statistical Techniques
Kalman Filters
Forecasting
Numerical Weather Prediction/Forecasting
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/44370

id CONICETDig_651bc702313fd5d2b4c4cab6dc67d590
oai_identifier_str oai:ri.conicet.gov.ar:11336/44370
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Application of the WRF-LETKF Data Assimilation System over Southern South America: Sensitivity to Model PhysicsDillon, María EugeniaGarcia Skabar, YaninaRuiz, Juan JoseKalnay, EugeniaCollini, Estela AngelaEchevarria, PabloSaucedo, Marcos AdolfoMiyoshi, TakemasaKunii, MasaruMathematical And Statistical TechniquesKalman FiltersForecastingNumerical Weather Prediction/Forecastinghttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Improving the initial conditions of short-range numerical weather prediction (NWP) models is one of the main goals of the meteorological community. Development of data assimilation and ensemble forecast systems is essential in any national weather service (NWS). In this sense, the local ensemble transform Kalman filter (LETKF) is a methodology that can satisfy both requirements in an efficient manner. The Weather Research and Forecasting (WRF) Model coupled with the LETKF, developed at the University of Maryland, College Park, have been implemented experimentally at the NWS of Argentina [Servicio Meteorológico Nacional (SMN)], but at a somewhat lower resolution (40 km) than the operational Global Forecast System (GFS) at that time (27 km). The purpose of this work is not to show that the system presented herein is better than the higher-resolution GFS, but that its performance is reasonably comparable, and to provide the basis for a continued improved development of an independent regional data assimilation and forecasting system. The WRF-LETKF system is tested during the spring of 2012, using the prepared or quality controlled data in Binary Universal Form for Representation of Meteorological Data (PREPBUFR) observations from the National Centers for Environmental Prediction (NCEP) and lateral boundary conditions from the GFS. To assess the effect of model error, a single-model LETKF system (LETKF-single) is compared with a multischeme implementation (LETKF-multi), which uses different boundary layer and cumulus convection schemes for the generation of the ensemble of forecasts. The performance of both experiments during the test period shows that the LETKF-multi usually outperforms the LETKF-single, evidencing the advantages of the use of the multischeme approach. Both data assimilation systems are slightly worse than the GFS in terms of the synoptic environment representation, as could be expected given their lower resolution. Results from a case study of a strong convective system suggest that the LETKF-multi improves the location of the most intense area of precipitation with respect to the LETKF-single, although both systems show an underestimation of the total accumulated precipitation. These preliminary results encourage continuing the development of an operational data assimilation system based on WRF-LETKF at the SMN.Fil: Dillon, María Eugenia. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Garcia Skabar, Yanina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Kalnay, Eugenia. University of Maryland; Estados UnidosFil: Collini, Estela Angela. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; ArgentinaFil: Echevarria, Pablo. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; ArgentinaFil: Saucedo, Marcos Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Miyoshi, Takemasa. RIKEN Advanced Institute for Computational Science; JapónFil: Kunii, Masaru. RIKEN Advanced Institute for Computational Science; JapónAmerican Meteorological Society2016-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/44370Dillon, María Eugenia; Garcia Skabar, Yanina; Ruiz, Juan Jose; Kalnay, Eugenia; Collini, Estela Angela; et al.; Application of the WRF-LETKF Data Assimilation System over Southern South America: Sensitivity to Model Physics; American Meteorological Society; Weather and Forecasting; 31; 1; 2-2016; 217-2360882-8156CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1175/WAF-D-14-00157.1info:eu-repo/semantics/altIdentifier/url/https://journals.ametsoc.org/doi/10.1175/WAF-D-14-00157.1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:05Zoai:ri.conicet.gov.ar:11336/44370instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:05.431CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Application of the WRF-LETKF Data Assimilation System over Southern South America: Sensitivity to Model Physics
title Application of the WRF-LETKF Data Assimilation System over Southern South America: Sensitivity to Model Physics
spellingShingle Application of the WRF-LETKF Data Assimilation System over Southern South America: Sensitivity to Model Physics
Dillon, María Eugenia
Mathematical And Statistical Techniques
Kalman Filters
Forecasting
Numerical Weather Prediction/Forecasting
title_short Application of the WRF-LETKF Data Assimilation System over Southern South America: Sensitivity to Model Physics
title_full Application of the WRF-LETKF Data Assimilation System over Southern South America: Sensitivity to Model Physics
title_fullStr Application of the WRF-LETKF Data Assimilation System over Southern South America: Sensitivity to Model Physics
title_full_unstemmed Application of the WRF-LETKF Data Assimilation System over Southern South America: Sensitivity to Model Physics
title_sort Application of the WRF-LETKF Data Assimilation System over Southern South America: Sensitivity to Model Physics
dc.creator.none.fl_str_mv Dillon, María Eugenia
Garcia Skabar, Yanina
Ruiz, Juan Jose
Kalnay, Eugenia
Collini, Estela Angela
Echevarria, Pablo
Saucedo, Marcos Adolfo
Miyoshi, Takemasa
Kunii, Masaru
author Dillon, María Eugenia
author_facet Dillon, María Eugenia
Garcia Skabar, Yanina
Ruiz, Juan Jose
Kalnay, Eugenia
Collini, Estela Angela
Echevarria, Pablo
Saucedo, Marcos Adolfo
Miyoshi, Takemasa
Kunii, Masaru
author_role author
author2 Garcia Skabar, Yanina
Ruiz, Juan Jose
Kalnay, Eugenia
Collini, Estela Angela
Echevarria, Pablo
Saucedo, Marcos Adolfo
Miyoshi, Takemasa
Kunii, Masaru
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Mathematical And Statistical Techniques
Kalman Filters
Forecasting
Numerical Weather Prediction/Forecasting
topic Mathematical And Statistical Techniques
Kalman Filters
Forecasting
Numerical Weather Prediction/Forecasting
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Improving the initial conditions of short-range numerical weather prediction (NWP) models is one of the main goals of the meteorological community. Development of data assimilation and ensemble forecast systems is essential in any national weather service (NWS). In this sense, the local ensemble transform Kalman filter (LETKF) is a methodology that can satisfy both requirements in an efficient manner. The Weather Research and Forecasting (WRF) Model coupled with the LETKF, developed at the University of Maryland, College Park, have been implemented experimentally at the NWS of Argentina [Servicio Meteorológico Nacional (SMN)], but at a somewhat lower resolution (40 km) than the operational Global Forecast System (GFS) at that time (27 km). The purpose of this work is not to show that the system presented herein is better than the higher-resolution GFS, but that its performance is reasonably comparable, and to provide the basis for a continued improved development of an independent regional data assimilation and forecasting system. The WRF-LETKF system is tested during the spring of 2012, using the prepared or quality controlled data in Binary Universal Form for Representation of Meteorological Data (PREPBUFR) observations from the National Centers for Environmental Prediction (NCEP) and lateral boundary conditions from the GFS. To assess the effect of model error, a single-model LETKF system (LETKF-single) is compared with a multischeme implementation (LETKF-multi), which uses different boundary layer and cumulus convection schemes for the generation of the ensemble of forecasts. The performance of both experiments during the test period shows that the LETKF-multi usually outperforms the LETKF-single, evidencing the advantages of the use of the multischeme approach. Both data assimilation systems are slightly worse than the GFS in terms of the synoptic environment representation, as could be expected given their lower resolution. Results from a case study of a strong convective system suggest that the LETKF-multi improves the location of the most intense area of precipitation with respect to the LETKF-single, although both systems show an underestimation of the total accumulated precipitation. These preliminary results encourage continuing the development of an operational data assimilation system based on WRF-LETKF at the SMN.
Fil: Dillon, María Eugenia. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Garcia Skabar, Yanina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Kalnay, Eugenia. University of Maryland; Estados Unidos
Fil: Collini, Estela Angela. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina
Fil: Echevarria, Pablo. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina
Fil: Saucedo, Marcos Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina
Fil: Miyoshi, Takemasa. RIKEN Advanced Institute for Computational Science; Japón
Fil: Kunii, Masaru. RIKEN Advanced Institute for Computational Science; Japón
description Improving the initial conditions of short-range numerical weather prediction (NWP) models is one of the main goals of the meteorological community. Development of data assimilation and ensemble forecast systems is essential in any national weather service (NWS). In this sense, the local ensemble transform Kalman filter (LETKF) is a methodology that can satisfy both requirements in an efficient manner. The Weather Research and Forecasting (WRF) Model coupled with the LETKF, developed at the University of Maryland, College Park, have been implemented experimentally at the NWS of Argentina [Servicio Meteorológico Nacional (SMN)], but at a somewhat lower resolution (40 km) than the operational Global Forecast System (GFS) at that time (27 km). The purpose of this work is not to show that the system presented herein is better than the higher-resolution GFS, but that its performance is reasonably comparable, and to provide the basis for a continued improved development of an independent regional data assimilation and forecasting system. The WRF-LETKF system is tested during the spring of 2012, using the prepared or quality controlled data in Binary Universal Form for Representation of Meteorological Data (PREPBUFR) observations from the National Centers for Environmental Prediction (NCEP) and lateral boundary conditions from the GFS. To assess the effect of model error, a single-model LETKF system (LETKF-single) is compared with a multischeme implementation (LETKF-multi), which uses different boundary layer and cumulus convection schemes for the generation of the ensemble of forecasts. The performance of both experiments during the test period shows that the LETKF-multi usually outperforms the LETKF-single, evidencing the advantages of the use of the multischeme approach. Both data assimilation systems are slightly worse than the GFS in terms of the synoptic environment representation, as could be expected given their lower resolution. Results from a case study of a strong convective system suggest that the LETKF-multi improves the location of the most intense area of precipitation with respect to the LETKF-single, although both systems show an underestimation of the total accumulated precipitation. These preliminary results encourage continuing the development of an operational data assimilation system based on WRF-LETKF at the SMN.
publishDate 2016
dc.date.none.fl_str_mv 2016-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/44370
Dillon, María Eugenia; Garcia Skabar, Yanina; Ruiz, Juan Jose; Kalnay, Eugenia; Collini, Estela Angela; et al.; Application of the WRF-LETKF Data Assimilation System over Southern South America: Sensitivity to Model Physics; American Meteorological Society; Weather and Forecasting; 31; 1; 2-2016; 217-236
0882-8156
CONICET Digital
CONICET
url http://hdl.handle.net/11336/44370
identifier_str_mv Dillon, María Eugenia; Garcia Skabar, Yanina; Ruiz, Juan Jose; Kalnay, Eugenia; Collini, Estela Angela; et al.; Application of the WRF-LETKF Data Assimilation System over Southern South America: Sensitivity to Model Physics; American Meteorological Society; Weather and Forecasting; 31; 1; 2-2016; 217-236
0882-8156
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1175/WAF-D-14-00157.1
info:eu-repo/semantics/altIdentifier/url/https://journals.ametsoc.org/doi/10.1175/WAF-D-14-00157.1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Meteorological Society
publisher.none.fl_str_mv American Meteorological Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269134950236161
score 13.13397