Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation
- Autores
- Campolo, Nicolás; Mastrogiovanni, Mauricio; Mariotti, Michele; Issoglio, Federico Matías; Estrin, Dario Ariel; Hägglund, Per; Grune, Tilman; Davies, Michael J.; Bartesaghi, Silvina; Radi, Rafael
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Glutamine synthetase (GS), which catalyzes the ATP-dependent synthesis of L-glutamine from L-glutamate and ammonia, is a ubiquitous and conserved enzyme that plays a pivotal role in nitrogen metabolism across all life domains. In vertebrates, GS is highly expressed in astrocytes, where its activity sustains the glutamate-glutamine cycle at glutamatergic synapses and is thus essential for maintaining brain homeostasis. In fact, decreased GS levels or activity have been associated with neurodegenerative diseases, with these alterations attributed to oxidative post-translational modifications of the protein, in particular tyrosine nitration. In this study, we expressed and purified human GS (HsGS) and performed an in-depth analysis of its oxidative inactivation by peroxynitrite (ONOO−) in vitro. We found that ONOO− exposure led to a dose-dependent loss of HsGS activity, the oxidation of cysteine, methionine, and tyrosine residues and also the nitration of tryptophan and tyrosine residues. Peptide mapping by LC-MS/MS through combined H216O/H218O trypsin digestion identified up to 10 tyrosine nitration sites and five types of dityrosine cross-links; these modifications were further scrutinized by structural analysis. Tyrosine residues 171, 185, 269, 283, and 336 were the main nitration targets; however, tyrosine-to-phenylalanine HsGS mutants revealed that their sole nitration was not responsible for enzyme inactivation. In addition, we observed that ONOO− induced HsGS aggregation and activity loss. Thiol oxidation was a key modification to elicit aggregation, as it was also induced by hydrogen peroxide treatment. Taken together, our results indicate that multiple oxidative events at various sites are responsible for the inactivation and aggregation of human GS.
Fil: Campolo, Nicolás. Universidad de la Republica; Uruguay
Fil: Mastrogiovanni, Mauricio. Universidad de la Republica; Uruguay
Fil: Mariotti, Michele. Universidad de Copenhagen; Dinamarca
Fil: Issoglio, Federico Matías. Universidade Nova de Lisboa; Portugal. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Estrin, Dario Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Fil: Hägglund, Per. Universidad de Copenhagen; Dinamarca
Fil: Grune, Tilman. Universidad de Viena; Austria. German Center for Cardiovascular Research; Alemania. German Institute of Human Nutrition; Alemania
Fil: Davies, Michael J.. Universidad de Copenhagen; Dinamarca
Fil: Bartesaghi, Silvina. Universidad de la Republica; Uruguay
Fil: Radi, Rafael. Universidad de la Republica; Uruguay - Materia
-
AGGREGATION
DITYROSINE
FREE RADICALS
GLUTAMINE SYNTHETASE
HYDROGEN PEROXIDE
NITROTYROSINE
OXIDANTS
PEROXYNITRITE
THIOL OXIDATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/218973
Ver los metadatos del registro completo
id |
CONICETDig_489f17a315beffc3db688055d2f8a36e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/218973 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregationCampolo, NicolásMastrogiovanni, MauricioMariotti, MicheleIssoglio, Federico MatíasEstrin, Dario ArielHägglund, PerGrune, TilmanDavies, Michael J.Bartesaghi, SilvinaRadi, RafaelAGGREGATIONDITYROSINEFREE RADICALSGLUTAMINE SYNTHETASEHYDROGEN PEROXIDENITROTYROSINEOXIDANTSPEROXYNITRITETHIOL OXIDATIONhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Glutamine synthetase (GS), which catalyzes the ATP-dependent synthesis of L-glutamine from L-glutamate and ammonia, is a ubiquitous and conserved enzyme that plays a pivotal role in nitrogen metabolism across all life domains. In vertebrates, GS is highly expressed in astrocytes, where its activity sustains the glutamate-glutamine cycle at glutamatergic synapses and is thus essential for maintaining brain homeostasis. In fact, decreased GS levels or activity have been associated with neurodegenerative diseases, with these alterations attributed to oxidative post-translational modifications of the protein, in particular tyrosine nitration. In this study, we expressed and purified human GS (HsGS) and performed an in-depth analysis of its oxidative inactivation by peroxynitrite (ONOO−) in vitro. We found that ONOO− exposure led to a dose-dependent loss of HsGS activity, the oxidation of cysteine, methionine, and tyrosine residues and also the nitration of tryptophan and tyrosine residues. Peptide mapping by LC-MS/MS through combined H216O/H218O trypsin digestion identified up to 10 tyrosine nitration sites and five types of dityrosine cross-links; these modifications were further scrutinized by structural analysis. Tyrosine residues 171, 185, 269, 283, and 336 were the main nitration targets; however, tyrosine-to-phenylalanine HsGS mutants revealed that their sole nitration was not responsible for enzyme inactivation. In addition, we observed that ONOO− induced HsGS aggregation and activity loss. Thiol oxidation was a key modification to elicit aggregation, as it was also induced by hydrogen peroxide treatment. Taken together, our results indicate that multiple oxidative events at various sites are responsible for the inactivation and aggregation of human GS.Fil: Campolo, Nicolás. Universidad de la Republica; UruguayFil: Mastrogiovanni, Mauricio. Universidad de la Republica; UruguayFil: Mariotti, Michele. Universidad de Copenhagen; DinamarcaFil: Issoglio, Federico Matías. Universidade Nova de Lisboa; Portugal. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Estrin, Dario Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Hägglund, Per. Universidad de Copenhagen; DinamarcaFil: Grune, Tilman. Universidad de Viena; Austria. German Center for Cardiovascular Research; Alemania. German Institute of Human Nutrition; AlemaniaFil: Davies, Michael J.. Universidad de Copenhagen; DinamarcaFil: Bartesaghi, Silvina. Universidad de la Republica; UruguayFil: Radi, Rafael. Universidad de la Republica; UruguayAmerican Society for Biochemistry and Molecular Biology2023-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/218973Campolo, Nicolás; Mastrogiovanni, Mauricio; Mariotti, Michele; Issoglio, Federico Matías; Estrin, Dario Ariel; et al.; Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation; American Society for Biochemistry and Molecular Biology; Journal of Biological Chemistry (online); 299; 3; 3-2023; 1-220021-9258CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S002192582300073Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jbc.2023.102941info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:02Zoai:ri.conicet.gov.ar:11336/218973instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:03.224CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation |
title |
Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation |
spellingShingle |
Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation Campolo, Nicolás AGGREGATION DITYROSINE FREE RADICALS GLUTAMINE SYNTHETASE HYDROGEN PEROXIDE NITROTYROSINE OXIDANTS PEROXYNITRITE THIOL OXIDATION |
title_short |
Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation |
title_full |
Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation |
title_fullStr |
Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation |
title_full_unstemmed |
Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation |
title_sort |
Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation |
dc.creator.none.fl_str_mv |
Campolo, Nicolás Mastrogiovanni, Mauricio Mariotti, Michele Issoglio, Federico Matías Estrin, Dario Ariel Hägglund, Per Grune, Tilman Davies, Michael J. Bartesaghi, Silvina Radi, Rafael |
author |
Campolo, Nicolás |
author_facet |
Campolo, Nicolás Mastrogiovanni, Mauricio Mariotti, Michele Issoglio, Federico Matías Estrin, Dario Ariel Hägglund, Per Grune, Tilman Davies, Michael J. Bartesaghi, Silvina Radi, Rafael |
author_role |
author |
author2 |
Mastrogiovanni, Mauricio Mariotti, Michele Issoglio, Federico Matías Estrin, Dario Ariel Hägglund, Per Grune, Tilman Davies, Michael J. Bartesaghi, Silvina Radi, Rafael |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
AGGREGATION DITYROSINE FREE RADICALS GLUTAMINE SYNTHETASE HYDROGEN PEROXIDE NITROTYROSINE OXIDANTS PEROXYNITRITE THIOL OXIDATION |
topic |
AGGREGATION DITYROSINE FREE RADICALS GLUTAMINE SYNTHETASE HYDROGEN PEROXIDE NITROTYROSINE OXIDANTS PEROXYNITRITE THIOL OXIDATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Glutamine synthetase (GS), which catalyzes the ATP-dependent synthesis of L-glutamine from L-glutamate and ammonia, is a ubiquitous and conserved enzyme that plays a pivotal role in nitrogen metabolism across all life domains. In vertebrates, GS is highly expressed in astrocytes, where its activity sustains the glutamate-glutamine cycle at glutamatergic synapses and is thus essential for maintaining brain homeostasis. In fact, decreased GS levels or activity have been associated with neurodegenerative diseases, with these alterations attributed to oxidative post-translational modifications of the protein, in particular tyrosine nitration. In this study, we expressed and purified human GS (HsGS) and performed an in-depth analysis of its oxidative inactivation by peroxynitrite (ONOO−) in vitro. We found that ONOO− exposure led to a dose-dependent loss of HsGS activity, the oxidation of cysteine, methionine, and tyrosine residues and also the nitration of tryptophan and tyrosine residues. Peptide mapping by LC-MS/MS through combined H216O/H218O trypsin digestion identified up to 10 tyrosine nitration sites and five types of dityrosine cross-links; these modifications were further scrutinized by structural analysis. Tyrosine residues 171, 185, 269, 283, and 336 were the main nitration targets; however, tyrosine-to-phenylalanine HsGS mutants revealed that their sole nitration was not responsible for enzyme inactivation. In addition, we observed that ONOO− induced HsGS aggregation and activity loss. Thiol oxidation was a key modification to elicit aggregation, as it was also induced by hydrogen peroxide treatment. Taken together, our results indicate that multiple oxidative events at various sites are responsible for the inactivation and aggregation of human GS. Fil: Campolo, Nicolás. Universidad de la Republica; Uruguay Fil: Mastrogiovanni, Mauricio. Universidad de la Republica; Uruguay Fil: Mariotti, Michele. Universidad de Copenhagen; Dinamarca Fil: Issoglio, Federico Matías. Universidade Nova de Lisboa; Portugal. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina Fil: Estrin, Dario Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina Fil: Hägglund, Per. Universidad de Copenhagen; Dinamarca Fil: Grune, Tilman. Universidad de Viena; Austria. German Center for Cardiovascular Research; Alemania. German Institute of Human Nutrition; Alemania Fil: Davies, Michael J.. Universidad de Copenhagen; Dinamarca Fil: Bartesaghi, Silvina. Universidad de la Republica; Uruguay Fil: Radi, Rafael. Universidad de la Republica; Uruguay |
description |
Glutamine synthetase (GS), which catalyzes the ATP-dependent synthesis of L-glutamine from L-glutamate and ammonia, is a ubiquitous and conserved enzyme that plays a pivotal role in nitrogen metabolism across all life domains. In vertebrates, GS is highly expressed in astrocytes, where its activity sustains the glutamate-glutamine cycle at glutamatergic synapses and is thus essential for maintaining brain homeostasis. In fact, decreased GS levels or activity have been associated with neurodegenerative diseases, with these alterations attributed to oxidative post-translational modifications of the protein, in particular tyrosine nitration. In this study, we expressed and purified human GS (HsGS) and performed an in-depth analysis of its oxidative inactivation by peroxynitrite (ONOO−) in vitro. We found that ONOO− exposure led to a dose-dependent loss of HsGS activity, the oxidation of cysteine, methionine, and tyrosine residues and also the nitration of tryptophan and tyrosine residues. Peptide mapping by LC-MS/MS through combined H216O/H218O trypsin digestion identified up to 10 tyrosine nitration sites and five types of dityrosine cross-links; these modifications were further scrutinized by structural analysis. Tyrosine residues 171, 185, 269, 283, and 336 were the main nitration targets; however, tyrosine-to-phenylalanine HsGS mutants revealed that their sole nitration was not responsible for enzyme inactivation. In addition, we observed that ONOO− induced HsGS aggregation and activity loss. Thiol oxidation was a key modification to elicit aggregation, as it was also induced by hydrogen peroxide treatment. Taken together, our results indicate that multiple oxidative events at various sites are responsible for the inactivation and aggregation of human GS. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/218973 Campolo, Nicolás; Mastrogiovanni, Mauricio; Mariotti, Michele; Issoglio, Federico Matías; Estrin, Dario Ariel; et al.; Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation; American Society for Biochemistry and Molecular Biology; Journal of Biological Chemistry (online); 299; 3; 3-2023; 1-22 0021-9258 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/218973 |
identifier_str_mv |
Campolo, Nicolás; Mastrogiovanni, Mauricio; Mariotti, Michele; Issoglio, Federico Matías; Estrin, Dario Ariel; et al.; Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation; American Society for Biochemistry and Molecular Biology; Journal of Biological Chemistry (online); 299; 3; 3-2023; 1-22 0021-9258 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S002192582300073X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jbc.2023.102941 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Society for Biochemistry and Molecular Biology |
publisher.none.fl_str_mv |
American Society for Biochemistry and Molecular Biology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613438587797504 |
score |
13.070432 |