Braided module and comodule algebras, Galois extensions and elements of trace 1

Autores
Da Rocha, Mauricio Omar; Guccione, Jorge Alberto; Guccione, Juan Jose
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let k be a field and let H be a rigid braided Hopf k-algebra. In this paper we continue the study of the theory of braided Hopf crossed products began in [J.A. Guccione, J.J. Guccione, Theory of braided Hopf crossed products, J. Algebra 261 (2003) 54-101]. First we show that to have an H-braided comodule algebra is the same that to have an H†-braided module algebra, where H† is a variant of H*, and then we study the maps [,] and (,), that appear in the Morita context introduced in the above cited paper.
Fil: Da Rocha, Mauricio Omar. Universidad de Buenos Aires. Ciclo Básico Común; Argentina
Fil: Guccione, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Guccione, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
BRAIDED HOPF ALGEBRAS
CROSSED PRODUCTS
GALOIS EXTENSIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/99850

id CONICETDig_4875962684ea31adf20ac6a8b69730d6
oai_identifier_str oai:ri.conicet.gov.ar:11336/99850
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Braided module and comodule algebras, Galois extensions and elements of trace 1Da Rocha, Mauricio OmarGuccione, Jorge AlbertoGuccione, Juan JoseBRAIDED HOPF ALGEBRASCROSSED PRODUCTSGALOIS EXTENSIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let k be a field and let H be a rigid braided Hopf k-algebra. In this paper we continue the study of the theory of braided Hopf crossed products began in [J.A. Guccione, J.J. Guccione, Theory of braided Hopf crossed products, J. Algebra 261 (2003) 54-101]. First we show that to have an H-braided comodule algebra is the same that to have an H†-braided module algebra, where H† is a variant of H*, and then we study the maps [,] and (,), that appear in the Morita context introduced in the above cited paper.Fil: Da Rocha, Mauricio Omar. Universidad de Buenos Aires. Ciclo Básico Común; ArgentinaFil: Guccione, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Guccione, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaAcademic Press Inc Elsevier Science2007-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/99850Da Rocha, Mauricio Omar; Guccione, Jorge Alberto; Guccione, Juan Jose; Braided module and comodule algebras, Galois extensions and elements of trace 1; Academic Press Inc Elsevier Science; Journal of Algebra; 307; 2; 1-2007; 727-7680021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2006.05.008info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869306003565info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:38:45Zoai:ri.conicet.gov.ar:11336/99850instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:38:45.288CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Braided module and comodule algebras, Galois extensions and elements of trace 1
title Braided module and comodule algebras, Galois extensions and elements of trace 1
spellingShingle Braided module and comodule algebras, Galois extensions and elements of trace 1
Da Rocha, Mauricio Omar
BRAIDED HOPF ALGEBRAS
CROSSED PRODUCTS
GALOIS EXTENSIONS
title_short Braided module and comodule algebras, Galois extensions and elements of trace 1
title_full Braided module and comodule algebras, Galois extensions and elements of trace 1
title_fullStr Braided module and comodule algebras, Galois extensions and elements of trace 1
title_full_unstemmed Braided module and comodule algebras, Galois extensions and elements of trace 1
title_sort Braided module and comodule algebras, Galois extensions and elements of trace 1
dc.creator.none.fl_str_mv Da Rocha, Mauricio Omar
Guccione, Jorge Alberto
Guccione, Juan Jose
author Da Rocha, Mauricio Omar
author_facet Da Rocha, Mauricio Omar
Guccione, Jorge Alberto
Guccione, Juan Jose
author_role author
author2 Guccione, Jorge Alberto
Guccione, Juan Jose
author2_role author
author
dc.subject.none.fl_str_mv BRAIDED HOPF ALGEBRAS
CROSSED PRODUCTS
GALOIS EXTENSIONS
topic BRAIDED HOPF ALGEBRAS
CROSSED PRODUCTS
GALOIS EXTENSIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let k be a field and let H be a rigid braided Hopf k-algebra. In this paper we continue the study of the theory of braided Hopf crossed products began in [J.A. Guccione, J.J. Guccione, Theory of braided Hopf crossed products, J. Algebra 261 (2003) 54-101]. First we show that to have an H-braided comodule algebra is the same that to have an H†-braided module algebra, where H† is a variant of H*, and then we study the maps [,] and (,), that appear in the Morita context introduced in the above cited paper.
Fil: Da Rocha, Mauricio Omar. Universidad de Buenos Aires. Ciclo Básico Común; Argentina
Fil: Guccione, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Guccione, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description Let k be a field and let H be a rigid braided Hopf k-algebra. In this paper we continue the study of the theory of braided Hopf crossed products began in [J.A. Guccione, J.J. Guccione, Theory of braided Hopf crossed products, J. Algebra 261 (2003) 54-101]. First we show that to have an H-braided comodule algebra is the same that to have an H†-braided module algebra, where H† is a variant of H*, and then we study the maps [,] and (,), that appear in the Morita context introduced in the above cited paper.
publishDate 2007
dc.date.none.fl_str_mv 2007-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/99850
Da Rocha, Mauricio Omar; Guccione, Jorge Alberto; Guccione, Juan Jose; Braided module and comodule algebras, Galois extensions and elements of trace 1; Academic Press Inc Elsevier Science; Journal of Algebra; 307; 2; 1-2007; 727-768
0021-8693
CONICET Digital
CONICET
url http://hdl.handle.net/11336/99850
identifier_str_mv Da Rocha, Mauricio Omar; Guccione, Jorge Alberto; Guccione, Juan Jose; Braided module and comodule algebras, Galois extensions and elements of trace 1; Academic Press Inc Elsevier Science; Journal of Algebra; 307; 2; 1-2007; 727-768
0021-8693
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2006.05.008
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869306003565
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614411110580224
score 13.070432