Braided module and comodule algebras, Galois extensions and elements of trace 1
- Autores
- Da Rocha, M.; Guccione, J.A.; Guccione, J.J.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let k be a field and let H be a rigid braided Hopf k-algebra. In this paper we continue the study of the theory of braided Hopf crossed products began in [J.A. Guccione, J.J. Guccione, Theory of braided Hopf crossed products, J. Algebra 261 (2003) 54-101]. First we show that to have an H-braided comodule algebra is the same that to have an H†-braided module algebra, where H† is a variant of H*, and then we study the maps [,] and (,), that appear in the Morita context introduced in the above cited paper. © 2006.
Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Algebra 2007;307(2):727-768
- Materia
-
Braided Hopf algebras
Crossed products
Galois extensions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00218693_v307_n2_p727_DaRocha
Ver los metadatos del registro completo
id |
BDUBAFCEN_0d4f651b842d5b1a9f8269f1369017ee |
---|---|
oai_identifier_str |
paperaa:paper_00218693_v307_n2_p727_DaRocha |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Braided module and comodule algebras, Galois extensions and elements of trace 1Da Rocha, M.Guccione, J.A.Guccione, J.J.Braided Hopf algebrasCrossed productsGalois extensionsLet k be a field and let H be a rigid braided Hopf k-algebra. In this paper we continue the study of the theory of braided Hopf crossed products began in [J.A. Guccione, J.J. Guccione, Theory of braided Hopf crossed products, J. Algebra 261 (2003) 54-101]. First we show that to have an H-braided comodule algebra is the same that to have an H†-braided module algebra, where H† is a variant of H*, and then we study the maps [,] and (,), that appear in the Morita context introduced in the above cited paper. © 2006.Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00218693_v307_n2_p727_DaRochaJ. Algebra 2007;307(2):727-768reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:05Zpaperaa:paper_00218693_v307_n2_p727_DaRochaInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:06.946Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Braided module and comodule algebras, Galois extensions and elements of trace 1 |
title |
Braided module and comodule algebras, Galois extensions and elements of trace 1 |
spellingShingle |
Braided module and comodule algebras, Galois extensions and elements of trace 1 Da Rocha, M. Braided Hopf algebras Crossed products Galois extensions |
title_short |
Braided module and comodule algebras, Galois extensions and elements of trace 1 |
title_full |
Braided module and comodule algebras, Galois extensions and elements of trace 1 |
title_fullStr |
Braided module and comodule algebras, Galois extensions and elements of trace 1 |
title_full_unstemmed |
Braided module and comodule algebras, Galois extensions and elements of trace 1 |
title_sort |
Braided module and comodule algebras, Galois extensions and elements of trace 1 |
dc.creator.none.fl_str_mv |
Da Rocha, M. Guccione, J.A. Guccione, J.J. |
author |
Da Rocha, M. |
author_facet |
Da Rocha, M. Guccione, J.A. Guccione, J.J. |
author_role |
author |
author2 |
Guccione, J.A. Guccione, J.J. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Braided Hopf algebras Crossed products Galois extensions |
topic |
Braided Hopf algebras Crossed products Galois extensions |
dc.description.none.fl_txt_mv |
Let k be a field and let H be a rigid braided Hopf k-algebra. In this paper we continue the study of the theory of braided Hopf crossed products began in [J.A. Guccione, J.J. Guccione, Theory of braided Hopf crossed products, J. Algebra 261 (2003) 54-101]. First we show that to have an H-braided comodule algebra is the same that to have an H†-braided module algebra, where H† is a variant of H*, and then we study the maps [,] and (,), that appear in the Morita context introduced in the above cited paper. © 2006. Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
Let k be a field and let H be a rigid braided Hopf k-algebra. In this paper we continue the study of the theory of braided Hopf crossed products began in [J.A. Guccione, J.J. Guccione, Theory of braided Hopf crossed products, J. Algebra 261 (2003) 54-101]. First we show that to have an H-braided comodule algebra is the same that to have an H†-braided module algebra, where H† is a variant of H*, and then we study the maps [,] and (,), that appear in the Morita context introduced in the above cited paper. © 2006. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00218693_v307_n2_p727_DaRocha |
url |
http://hdl.handle.net/20.500.12110/paper_00218693_v307_n2_p727_DaRocha |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Algebra 2007;307(2):727-768 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618739012599808 |
score |
13.070432 |