On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups
- Autores
- Lauret, Emilio Agustin
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Eldredge, Gordina and Saloff-Coste recently conjectured that, for a given compact connected Lie group $G$, there is a positive real number $C$ such that $\lambda_1(G,g)\operatorname{diam}(G,g)^2\leq C$ for all left-invariant metrics $g$ on $G$. In this short note, we establish the conjecture for the small subclass of naturally reductive left-invariant metrics on a compact simple Lie group.
Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
DIAMETER
NATURALLY REDUCTIVE METRIC
LEFT-INVARIANT METRIC
LAPLACE EIGENVALUE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100378
Ver los metadatos del registro completo
| id |
CONICETDig_0b181edcfbdd77d9aea51001f95dc392 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100378 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groupsLauret, Emilio AgustinDIAMETERNATURALLY REDUCTIVE METRICLEFT-INVARIANT METRICLAPLACE EIGENVALUEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Eldredge, Gordina and Saloff-Coste recently conjectured that, for a given compact connected Lie group $G$, there is a positive real number $C$ such that $\lambda_1(G,g)\operatorname{diam}(G,g)^2\leq C$ for all left-invariant metrics $g$ on $G$. In this short note, we establish the conjecture for the small subclass of naturally reductive left-invariant metrics on a compact simple Lie group.Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaAmerican Mathematical Society2020-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100378Lauret, Emilio Agustin; On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups; American Mathematical Society; Proceedings of the American Mathematical Society; 3-2020; 1-50002-99391088-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/proc/earlyview/#proc14969info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/14969info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1906.03325info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:42:09Zoai:ri.conicet.gov.ar:11336/100378instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:42:09.737CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups |
| title |
On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups |
| spellingShingle |
On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups Lauret, Emilio Agustin DIAMETER NATURALLY REDUCTIVE METRIC LEFT-INVARIANT METRIC LAPLACE EIGENVALUE |
| title_short |
On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups |
| title_full |
On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups |
| title_fullStr |
On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups |
| title_full_unstemmed |
On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups |
| title_sort |
On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups |
| dc.creator.none.fl_str_mv |
Lauret, Emilio Agustin |
| author |
Lauret, Emilio Agustin |
| author_facet |
Lauret, Emilio Agustin |
| author_role |
author |
| dc.subject.none.fl_str_mv |
DIAMETER NATURALLY REDUCTIVE METRIC LEFT-INVARIANT METRIC LAPLACE EIGENVALUE |
| topic |
DIAMETER NATURALLY REDUCTIVE METRIC LEFT-INVARIANT METRIC LAPLACE EIGENVALUE |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Eldredge, Gordina and Saloff-Coste recently conjectured that, for a given compact connected Lie group $G$, there is a positive real number $C$ such that $\lambda_1(G,g)\operatorname{diam}(G,g)^2\leq C$ for all left-invariant metrics $g$ on $G$. In this short note, we establish the conjecture for the small subclass of naturally reductive left-invariant metrics on a compact simple Lie group. Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
| description |
Eldredge, Gordina and Saloff-Coste recently conjectured that, for a given compact connected Lie group $G$, there is a positive real number $C$ such that $\lambda_1(G,g)\operatorname{diam}(G,g)^2\leq C$ for all left-invariant metrics $g$ on $G$. In this short note, we establish the conjecture for the small subclass of naturally reductive left-invariant metrics on a compact simple Lie group. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100378 Lauret, Emilio Agustin; On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups; American Mathematical Society; Proceedings of the American Mathematical Society; 3-2020; 1-5 0002-9939 1088-6826 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/100378 |
| identifier_str_mv |
Lauret, Emilio Agustin; On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups; American Mathematical Society; Proceedings of the American Mathematical Society; 3-2020; 1-5 0002-9939 1088-6826 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/proc/earlyview/#proc14969 info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/14969 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1906.03325 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Mathematical Society |
| publisher.none.fl_str_mv |
American Mathematical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597624092884992 |
| score |
12.976206 |