On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups

Autores
Lauret, Emilio Agustin
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Eldredge, Gordina and Saloff-Coste recently conjectured that, for a given compact connected Lie group $G$, there is a positive real number $C$ such that $\lambda_1(G,g)\operatorname{diam}(G,g)^2\leq C$ for all left-invariant metrics $g$ on $G$. In this short note, we establish the conjecture for the small subclass of naturally reductive left-invariant metrics on a compact simple Lie group.
Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Materia
DIAMETER
NATURALLY REDUCTIVE METRIC
LEFT-INVARIANT METRIC
LAPLACE EIGENVALUE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100378

id CONICETDig_0b181edcfbdd77d9aea51001f95dc392
oai_identifier_str oai:ri.conicet.gov.ar:11336/100378
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groupsLauret, Emilio AgustinDIAMETERNATURALLY REDUCTIVE METRICLEFT-INVARIANT METRICLAPLACE EIGENVALUEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Eldredge, Gordina and Saloff-Coste recently conjectured that, for a given compact connected Lie group $G$, there is a positive real number $C$ such that $\lambda_1(G,g)\operatorname{diam}(G,g)^2\leq C$ for all left-invariant metrics $g$ on $G$. In this short note, we establish the conjecture for the small subclass of naturally reductive left-invariant metrics on a compact simple Lie group.Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaAmerican Mathematical Society2020-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100378Lauret, Emilio Agustin; On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups; American Mathematical Society; Proceedings of the American Mathematical Society; 3-2020; 1-50002-99391088-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/proc/earlyview/#proc14969info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/14969info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1906.03325info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:46:43Zoai:ri.conicet.gov.ar:11336/100378instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:46:43.537CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups
title On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups
spellingShingle On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups
Lauret, Emilio Agustin
DIAMETER
NATURALLY REDUCTIVE METRIC
LEFT-INVARIANT METRIC
LAPLACE EIGENVALUE
title_short On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups
title_full On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups
title_fullStr On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups
title_full_unstemmed On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups
title_sort On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups
dc.creator.none.fl_str_mv Lauret, Emilio Agustin
author Lauret, Emilio Agustin
author_facet Lauret, Emilio Agustin
author_role author
dc.subject.none.fl_str_mv DIAMETER
NATURALLY REDUCTIVE METRIC
LEFT-INVARIANT METRIC
LAPLACE EIGENVALUE
topic DIAMETER
NATURALLY REDUCTIVE METRIC
LEFT-INVARIANT METRIC
LAPLACE EIGENVALUE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Eldredge, Gordina and Saloff-Coste recently conjectured that, for a given compact connected Lie group $G$, there is a positive real number $C$ such that $\lambda_1(G,g)\operatorname{diam}(G,g)^2\leq C$ for all left-invariant metrics $g$ on $G$. In this short note, we establish the conjecture for the small subclass of naturally reductive left-invariant metrics on a compact simple Lie group.
Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
description Eldredge, Gordina and Saloff-Coste recently conjectured that, for a given compact connected Lie group $G$, there is a positive real number $C$ such that $\lambda_1(G,g)\operatorname{diam}(G,g)^2\leq C$ for all left-invariant metrics $g$ on $G$. In this short note, we establish the conjecture for the small subclass of naturally reductive left-invariant metrics on a compact simple Lie group.
publishDate 2020
dc.date.none.fl_str_mv 2020-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100378
Lauret, Emilio Agustin; On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups; American Mathematical Society; Proceedings of the American Mathematical Society; 3-2020; 1-5
0002-9939
1088-6826
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100378
identifier_str_mv Lauret, Emilio Agustin; On the smallest Laplace eigenvalue for naturally reductive metrics on compact simple Lie groups; American Mathematical Society; Proceedings of the American Mathematical Society; 3-2020; 1-5
0002-9939
1088-6826
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/proc/earlyview/#proc14969
info:eu-repo/semantics/altIdentifier/doi/10.1090/proc/14969
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1906.03325
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082981260689408
score 13.22299