On the strong subdifferentiability of homogeneous polynomials and (symmetric) tensor products
- Autores
- Dantas, Sheldon; Jung, Mingu; Mazzitelli, Martin Diego; Rodríguez, Jorge Tomás
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the (uniform) strong subdifferentiability of norms of Banach spaces P(N X, Y ∗) of all continuous N-homogeneous polynomials and tensor products of Banach spaces, namely X⊗b π· · · ⊗b πX and ⊗b πs,NX. Among other results, we characterize when the norms of spaces P(N'p, 'q), P(N lM1, lM2), and P(N d(w, p), lM2) are strongly subdifferentiable. Analogous results for multilinear mappings are also obtained. Since strong subdifferentiability of a dual space implies reflexivity, we improve some known results in [38, 48, 49] (in the spirit of Pitt's compactness theorem) on the reflexivity of spaces of N-homogeneous polynomials and N-linear mappings. Concerning the projective (symmetric) tensor norms, we provide positive results by considering the subsets U and Us of elementary tensors on the unit spheres of X⊗b π · · · ⊗b πX and ⊗b πs,N X, respectively. Specifically, we prove that the norms of ⊗b πs,N '2 and '2⊗b π · · · ⊗b π'2 are uniformly strongly subdifferentiable on Us and U, and that the norms of c0⊗b πs c0 and c0⊗b πc0 are strongly subdifferentiable on Us and U in the complex case.
Fil: Dantas, Sheldon. Universidad de Valencia; España. Universidad de Granada; España
Fil: Jung, Mingu. Korea Institute For Advanced Study; Corea del Sur
Fil: Mazzitelli, Martin Diego. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; Argentina
Fil: Rodríguez, Jorge Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina - Materia
-
TENSOR PRODUCT
SPACE OF MULTILINEAR FUNCTIONS AND POLYNOMIALS
STRONG SUBDIFFERENTIABILITY
BISHOP-PHELPS-BOLLOBÁS PROPERTY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/256352
Ver los metadatos del registro completo
| id |
CONICETDig_4735ff0f03a864c84622ef544002e80a |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/256352 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
On the strong subdifferentiability of homogeneous polynomials and (symmetric) tensor productsDantas, SheldonJung, MinguMazzitelli, Martin DiegoRodríguez, Jorge TomásTENSOR PRODUCTSPACE OF MULTILINEAR FUNCTIONS AND POLYNOMIALSSTRONG SUBDIFFERENTIABILITYBISHOP-PHELPS-BOLLOBÁS PROPERTYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the (uniform) strong subdifferentiability of norms of Banach spaces P(N X, Y ∗) of all continuous N-homogeneous polynomials and tensor products of Banach spaces, namely X⊗b π· · · ⊗b πX and ⊗b πs,NX. Among other results, we characterize when the norms of spaces P(N'p, 'q), P(N lM1, lM2), and P(N d(w, p), lM2) are strongly subdifferentiable. Analogous results for multilinear mappings are also obtained. Since strong subdifferentiability of a dual space implies reflexivity, we improve some known results in [38, 48, 49] (in the spirit of Pitt's compactness theorem) on the reflexivity of spaces of N-homogeneous polynomials and N-linear mappings. Concerning the projective (symmetric) tensor norms, we provide positive results by considering the subsets U and Us of elementary tensors on the unit spheres of X⊗b π · · · ⊗b πX and ⊗b πs,N X, respectively. Specifically, we prove that the norms of ⊗b πs,N '2 and '2⊗b π · · · ⊗b π'2 are uniformly strongly subdifferentiable on Us and U, and that the norms of c0⊗b πs c0 and c0⊗b πc0 are strongly subdifferentiable on Us and U in the complex case.Fil: Dantas, Sheldon. Universidad de Valencia; España. Universidad de Granada; EspañaFil: Jung, Mingu. Korea Institute For Advanced Study; Corea del SurFil: Mazzitelli, Martin Diego. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; ArgentinaFil: Rodríguez, Jorge Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; ArgentinaUniversitat Autònoma de Barcelona2025-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/256352Dantas, Sheldon; Jung, Mingu; Mazzitelli, Martin Diego; Rodríguez, Jorge Tomás; On the strong subdifferentiability of homogeneous polynomials and (symmetric) tensor products; Universitat Autònoma de Barcelona; Publicacions Matematiques; 69; 1; 1-2025; 109-1450214-1493CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://raco.cat/index.php/PublicacionsMatematiques/article/view/433276info:eu-repo/semantics/altIdentifier/url/https://dialnet.unirioja.es/servlet/articulo?codigo=9869728info:eu-repo/semantics/altIdentifier/doi/10.5565/PUBLMAT6912505info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:54:27Zoai:ri.conicet.gov.ar:11336/256352instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:54:28.066CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
On the strong subdifferentiability of homogeneous polynomials and (symmetric) tensor products |
| title |
On the strong subdifferentiability of homogeneous polynomials and (symmetric) tensor products |
| spellingShingle |
On the strong subdifferentiability of homogeneous polynomials and (symmetric) tensor products Dantas, Sheldon TENSOR PRODUCT SPACE OF MULTILINEAR FUNCTIONS AND POLYNOMIALS STRONG SUBDIFFERENTIABILITY BISHOP-PHELPS-BOLLOBÁS PROPERTY |
| title_short |
On the strong subdifferentiability of homogeneous polynomials and (symmetric) tensor products |
| title_full |
On the strong subdifferentiability of homogeneous polynomials and (symmetric) tensor products |
| title_fullStr |
On the strong subdifferentiability of homogeneous polynomials and (symmetric) tensor products |
| title_full_unstemmed |
On the strong subdifferentiability of homogeneous polynomials and (symmetric) tensor products |
| title_sort |
On the strong subdifferentiability of homogeneous polynomials and (symmetric) tensor products |
| dc.creator.none.fl_str_mv |
Dantas, Sheldon Jung, Mingu Mazzitelli, Martin Diego Rodríguez, Jorge Tomás |
| author |
Dantas, Sheldon |
| author_facet |
Dantas, Sheldon Jung, Mingu Mazzitelli, Martin Diego Rodríguez, Jorge Tomás |
| author_role |
author |
| author2 |
Jung, Mingu Mazzitelli, Martin Diego Rodríguez, Jorge Tomás |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
TENSOR PRODUCT SPACE OF MULTILINEAR FUNCTIONS AND POLYNOMIALS STRONG SUBDIFFERENTIABILITY BISHOP-PHELPS-BOLLOBÁS PROPERTY |
| topic |
TENSOR PRODUCT SPACE OF MULTILINEAR FUNCTIONS AND POLYNOMIALS STRONG SUBDIFFERENTIABILITY BISHOP-PHELPS-BOLLOBÁS PROPERTY |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We study the (uniform) strong subdifferentiability of norms of Banach spaces P(N X, Y ∗) of all continuous N-homogeneous polynomials and tensor products of Banach spaces, namely X⊗b π· · · ⊗b πX and ⊗b πs,NX. Among other results, we characterize when the norms of spaces P(N'p, 'q), P(N lM1, lM2), and P(N d(w, p), lM2) are strongly subdifferentiable. Analogous results for multilinear mappings are also obtained. Since strong subdifferentiability of a dual space implies reflexivity, we improve some known results in [38, 48, 49] (in the spirit of Pitt's compactness theorem) on the reflexivity of spaces of N-homogeneous polynomials and N-linear mappings. Concerning the projective (symmetric) tensor norms, we provide positive results by considering the subsets U and Us of elementary tensors on the unit spheres of X⊗b π · · · ⊗b πX and ⊗b πs,N X, respectively. Specifically, we prove that the norms of ⊗b πs,N '2 and '2⊗b π · · · ⊗b π'2 are uniformly strongly subdifferentiable on Us and U, and that the norms of c0⊗b πs c0 and c0⊗b πc0 are strongly subdifferentiable on Us and U in the complex case. Fil: Dantas, Sheldon. Universidad de Valencia; España. Universidad de Granada; España Fil: Jung, Mingu. Korea Institute For Advanced Study; Corea del Sur Fil: Mazzitelli, Martin Diego. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo; Argentina Fil: Rodríguez, Jorge Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina |
| description |
We study the (uniform) strong subdifferentiability of norms of Banach spaces P(N X, Y ∗) of all continuous N-homogeneous polynomials and tensor products of Banach spaces, namely X⊗b π· · · ⊗b πX and ⊗b πs,NX. Among other results, we characterize when the norms of spaces P(N'p, 'q), P(N lM1, lM2), and P(N d(w, p), lM2) are strongly subdifferentiable. Analogous results for multilinear mappings are also obtained. Since strong subdifferentiability of a dual space implies reflexivity, we improve some known results in [38, 48, 49] (in the spirit of Pitt's compactness theorem) on the reflexivity of spaces of N-homogeneous polynomials and N-linear mappings. Concerning the projective (symmetric) tensor norms, we provide positive results by considering the subsets U and Us of elementary tensors on the unit spheres of X⊗b π · · · ⊗b πX and ⊗b πs,N X, respectively. Specifically, we prove that the norms of ⊗b πs,N '2 and '2⊗b π · · · ⊗b π'2 are uniformly strongly subdifferentiable on Us and U, and that the norms of c0⊗b πs c0 and c0⊗b πc0 are strongly subdifferentiable on Us and U in the complex case. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-01 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/256352 Dantas, Sheldon; Jung, Mingu; Mazzitelli, Martin Diego; Rodríguez, Jorge Tomás; On the strong subdifferentiability of homogeneous polynomials and (symmetric) tensor products; Universitat Autònoma de Barcelona; Publicacions Matematiques; 69; 1; 1-2025; 109-145 0214-1493 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/256352 |
| identifier_str_mv |
Dantas, Sheldon; Jung, Mingu; Mazzitelli, Martin Diego; Rodríguez, Jorge Tomás; On the strong subdifferentiability of homogeneous polynomials and (symmetric) tensor products; Universitat Autònoma de Barcelona; Publicacions Matematiques; 69; 1; 1-2025; 109-145 0214-1493 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://raco.cat/index.php/PublicacionsMatematiques/article/view/433276 info:eu-repo/semantics/altIdentifier/url/https://dialnet.unirioja.es/servlet/articulo?codigo=9869728 info:eu-repo/semantics/altIdentifier/doi/10.5565/PUBLMAT6912505 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Universitat Autònoma de Barcelona |
| publisher.none.fl_str_mv |
Universitat Autònoma de Barcelona |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782242915876864 |
| score |
12.982451 |